A237353 For n=g+h, a(n) is the minimum value of omega(g)+omega(h).
0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2
Offset: 2
Keywords
Examples
For n=2, 2=1+1. 1 does not have prime factor. So a(2)=0+0=0; For n=6, 6=1+5. 1 does not have prime factor where 5 has one. Another case 6=3+3 yields sum of prime factors of g and h 1+1=2. Since 1 < 2, according to the definition, we chose the smaller one. So a(6)=1; For n=7, 7=2+5. Both 2 and 5 have one prime factor. So a(7)=1+1=2; For n=331, one of the case is 331=2+329=2+7*47. In which 2 has one prime factor, and 329 has two. So a(331)=1+2=3.
Links
- Lei Zhou, Table of n, a(n) for n = 2..10000
Programs
-
Mathematica
Table[ct = n; Do[h = n - g; c = Length[FactorInteger[g]] + Length[FactorInteger[h]]; If[g == 1, c--]; If[h == 1, c--]; If[c < ct, ct = c], {g, 1, Floor[n/2]}]; ct, {n, 2, 88}] Table[ Min@Table[PrimeNu[ n - k ] + PrimeNu[ k ], {k, n - 1}], {n, 2, 88}]
-
Sage
def a(n): return min(A001221(a)+A001221(n-a) for a in range(1,floor(n/2)+1)) # Ralf Stephan, Feb 23 2014
Comments