A237354 a(n) is the maximum of omega(g)+omega(h) for all decompositions n=g+h with g>=h>=1.
0, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 5, 4, 5, 5, 4, 4, 5, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 4, 6, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 6, 4, 5, 5, 5, 5, 5, 4, 5, 5, 5, 4, 6, 5, 5, 5, 5
Offset: 2
Examples
For n=2, 2=1+1. 1 does not have prime factor. So a(2)=0+0=0; For n=3, 3=1+2, 1 does not have prime factor, where 2 has one. So a(3)=0+1=1; For n=4, 4=1+3=2+2. From 1+3 we got 1, from 2+2 we got 2. The larger one is 2. So a(4)=1+1=2. ... For n=211, in best case we have 211=105+106=3*5*7+2*53. So a(211)=3+2=5.
Links
- Lei Zhou, Table of n, a(n) for n = 2..10000
Programs
-
Maple
A237354 := proc(n) local a,g,om ; a := 0 ; for g from 1 to n/2 do om := A001221(g)+A001221(n-g) ; if om > a then a := om ; end if; end do: a ; end proc: seq(A237354(n),n=2..100) ; # R. J. Mathar, Feb 13 2014
-
Mathematica
Table[ct = 0; Do[h = n - g; c = Length[FactorInteger[g]] + Length[FactorInteger[h]]; If[g == 1, c--]; If[h == 1, c--]; If[c > ct, ct = c], {g, 1, Floor[n/2]}]; ct, {n, 2, 88}] (* Wouter Meeussen : *) Table[ Max@Table[PrimeNu[ n - k ] + PrimeNu[ k ], {k, n - 1}], {n, 2, 88}]
Comments