This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237360 #17 Feb 09 2014 10:20:08 %S A237360 57,381,993,4557,16257,32943,49953,58323,109893,135057,167691,214833, %T A237360 237657,453603,503391,564753,658533,678153,780573,995007,1248807, %U A237360 1516593,1746363,2218611,2400951,3465183,3738423,4340973,4750221,5232657,6118203 %N A237360 Numbers n of the form p^2+p+1 (for prime p) such that n^2+n+1 is also prime. %H A237360 Harvey P. Dale, <a href="/A237360/b237360.txt">Table of n, a(n) for n = 1..10000</a> %e A237360 57 = 7^2+7+1 (7 is prime) and 57^2+57+1 = 3307 is also prime. Thus, 57 is a member of this sequence. %p A237360 for k from 1 do %p A237360 p := ithprime(k) ; %p A237360 n := numtheory[cyclotomic](3,p) ; %p A237360 pn := numtheory[cyclotomic](3,n) ; %p A237360 if isprime( pn) then %p A237360 print(n) ; %p A237360 end if; %p A237360 end do: # _R. J. Mathar_, Feb 07 2014 %t A237360 Select[Table[p^2+p+1,{p,Prime[Range[500]]}],PrimeQ[#^2+#+1]&] (* _Harvey P. Dale_, Feb 09 2014 *) %o A237360 (Python) %o A237360 import sympy %o A237360 from sympy import isprime %o A237360 {print(n**2+n+1) for n in range(10**4) if isprime(n) and isprime((n**2+n+1)**2+(n**2+n+1)+1)} %o A237360 (PARI) s=[]; forprime(p=2, 4000, if(isprime(p^4+2*p^3+4*p^2+3*p+3), s=concat(s, p^2+p+1))); s \\ _Colin Barker_, Feb 07 2014 %Y A237360 Cf. A060800, A002383. %K A237360 nonn %O A237360 1,1 %A A237360 _Derek Orr_, Feb 06 2014