cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A237445 Primes p such that f(f(p)) is prime, where f(x) = x^4 + x^3 + x^2 + x + 1 = A053699(x).

Original entry on oeis.org

1451, 2351, 2381, 2791, 5531, 5981, 7841, 8821, 10091, 10501, 11411, 11701, 12011, 13241, 15271, 15331, 16691, 17231, 18341, 18671, 19891, 20981, 21911, 23071, 23131, 23561, 23741, 24061, 25321, 27361, 29221, 30851, 30941, 31271, 32141, 33931
Offset: 1

Views

Author

Derek Orr, Feb 08 2014

Keywords

Comments

All numbers are congruent to 1 mod 10.

Examples

			1451 is prime and f(f(1451)) = 387147304469214558406348338836395337085545589397781 is prime. Thus, 1451 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    f(x)=x^4+x^3+x^2+x+1;forprime(p=1,35000,ispseudoprime(f(f(p)))&&print1(p",")) \\ M. F. Hasler, Feb 09 2014
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**5) if isprime(n) and isprime((n**4+n**3+n**2+n+1)**4+(n**4+n**3+n**2+n+1)**3+(n**4+n**3+n**2+n+1)**2+(n**4+n**3+n**2+n+1)+1)}
    
Showing 1-1 of 1 results.