This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237363 #20 Mar 22 2023 12:52:20 %S A237363 1,0,1,1,2,2,6,6,10,13,20,26,39,50,71,87,121,156,208,265,348,440,566, %T A237363 712,906,1131,1424,1766,2224,2738,3390,4168,5130,6266,7664,9312,11332, %U A237363 13723,16603,20004,24112,28942,34708,41522,49612,59031,70308,83479,98992 %N A237363 Number of partitions of n for which 2*(number of distinct parts) <= (number of parts). %C A237363 a(n) + A237365(n) = A000041(n). %C A237363 Also the number of integer partitions of n whose median difference is 0. For example, the partition (2,2,2,1,1) is counted because its multiset of differences {0,0,0,1} has median 0. - _Gus Wiseman_, Mar 18 2023 %H A237363 Alois P. Heinz, <a href="/A237363/b237363.txt">Table of n, a(n) for n = 0..800</a> %e A237363 Among the 22 partitions of 8, these qualify: [5,1,1,1], [4,4], [4,1,1,1,1], [3,3,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1], and the remaining 12 do not, so that a(8) = 10. %t A237363 z = 50; t = Map[Length[Select[IntegerPartitions[#], 2*Length[DeleteDuplicates[#]] <= Length[#] &]] &, Range[z]] (*A237363*) %t A237363 Table[PartitionsP[n] - t[[n]], {n, 1, z}] (*A237365*) (* _Peter J. C. Moses_, Feb 06 2014 *) %t A237363 Table[Length[Select[IntegerPartitions[n],Median[Differences[#]]==0&]],{n,0,30}] (* _Gus Wiseman_, Mar 18 2023 *) %Y A237363 These partitions have ranks A361204. %Y A237363 A000041 counts integer partitions, strict A000009. %Y A237363 A008284 counts partitions by number of parts, reverse A058398. %Y A237363 A116608 counts partitions by number of distinct parts. %Y A237363 A359893 and A359901 count partitions by median, odd-length A359902. %Y A237363 Comparing twice the number of distinct parts to the number of parts: %Y A237363 less: A360254, ranks A360558 %Y A237363 equal: A239959, ranks A067801 %Y A237363 greater: A237365, ranks A361393 %Y A237363 less or equal: A237363, ranks A361204 %Y A237363 greater or equal: A361394, ranks A361395 %Y A237363 Cf. A000975, A027193, A114638, A240219, A325347, A360005, A360244. %K A237363 nonn %O A237363 0,5 %A A237363 _Clark Kimberling_, Feb 06 2014