This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237364 #10 Feb 07 2014 05:02:53 %S A237364 616067011,58749951412747,93054242152309543,146945091162352770847, %T A237364 2224989620406870255043,43184085337135904888293, %U A237364 53224134341571172990843,109539169818149034933067,308295173856880401026941,6197901576526752380316343,14789135287218506962379317 %N A237364 Numbers n of the form n=Phi(7,p) (for prime p) such that Phi(7,n) is also prime. %C A237364 Phi(7,x) =1+x+x^2+x^3+x^4+x^5+x^6 =A053716(x) is the 7th cyclotomic polynomial. %e A237364 616067011 = 29^6+29^5+29^4+29^3+29^2+29+1 (29 is prime) and 616067011^6+616067011^5+616067011^4+616067011^3+616067011^2+616067011+1 = 54672347801779330810964871392077416495507203132755717 is prime. Thus, 616067011 is a member of this sequence. %p A237364 for k from 1 do %p A237364 p := ithprime(k) ; %p A237364 n := numtheory[cyclotomic](7,p) ; %p A237364 pn := numtheory[cyclotomic](7,n) ; %p A237364 if isprime( pn) then %p A237364 print(n) ; %p A237364 end if; %p A237364 end do: # _R. J. Mathar_, Feb 07 2014 %o A237364 (Python) %o A237364 import sympy %o A237364 from sympy import isprime %o A237364 {print(n**6+n**5+n**4+n**3+n**2+n+1) for n in range(10**5) if isprime(n) and isprime((n**6+n**5+n**4+n**3+n**2+n+1)**6+(n**6+n**5+n**4+n**3+n**2+n+1)**5+(n**6+n**5+n**4+n**3+n**2+n+1)**4+(n**6+n**5+n**4+n**3+n**2+n+1)**3+(n**6+n**5+n**4+n**3+n**2+n+1)**2+(n**6+n**5+n**4+n**3+n**2+n+1)+1)} %Y A237364 Cf. A088550. %K A237364 nonn %O A237364 1,1 %A A237364 _Derek Orr_, Feb 06 2014