A237413 Number of ways to write n = k + m with k > 0 and m > 0 such that p(k)^2 - 2, p(m)^2 - 2 and p(p(m))^2 - 2 are all prime, where p(j) denotes the j-th prime.
0, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 3, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 5, 3, 1, 3, 3, 3, 3, 3, 1, 3, 1, 2, 2, 5, 2, 3, 3, 5, 2, 5, 7, 3, 3, 4, 5, 5, 5, 4, 4, 5, 2, 3, 4, 7, 5, 3, 4, 8, 6, 5, 4, 6, 5, 4, 2, 6, 5, 6, 5, 2, 6, 7
Offset: 1
Keywords
Examples
a(7) = 1 since 7 = 6 + 1 with p(6)^2 - 2 = 13^2 - 2 = 167, p(1)^2 - 2 = 2^2 - 2 = 2 and p(p(1))^2 - 2 = p(2)^2 - 2 = 3^2 - 2 = 7 are all prime. a(516) = 1 since 516 = 473 + 43 with p(473)^2 - 2 = 3359^2 - 2 = 11282879, p(43)^2 - 2 = 191^2 - 2 = 36479 and p(p(43))^2 - 2 = p(191)^2 - 2 = 1153^2 - 2 = 1329407 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Super Twin Prime Conjecture, a message to Number Theory List, Feb. 6, 2014.
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
pq[k_]:=PrimeQ[Prime[k]^2-2] a[n_]:=Sum[If[pq[k]&&pq[n-k]&&pq[Prime[n-k]],1,0],{k,1,n-1}] Table[a[n],{n,1,80}]
Comments