cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237417 Numbers that are the product of an odiousfree number and an evilfree number.

This page as a plain text file.
%I A237417 #41 Oct 17 2020 02:18:44
%S A237417 3,5,6,9,10,12,15,17,18,20,21,23,24,27,29,30,33,34,35,36,39,40,42,43,
%T A237417 45,46,48,51,53,54,55,57,58,60,63,65,66,68,70,71,72,78,80,83,84,85,86,
%U A237417 89,90,92,93,95,96,99,101,102,105,106,108,110,111,113,114,116,117,119,120,123,126,129
%N A237417 Numbers that are the product of an odiousfree number and an evilfree number.
%C A237417 Odiousfree*evilfree numbers: numbers of the form odiousfree*evilfree.
%C A237417 Subsequence of this sequence (A237417): numbers that are not the products of two odious numbers or the products of two evil numbers: 3, 5, 6, 10, 12, 17, 20, 23, 24, 29, 33, 34, 39, 40, 43, 46, 48, 57, 58, 63, 65, 66, 68, 71, 78, 80, 83, 86, 89, 92, 95, 101, 105, 106, 111, 113, 114, 116, 119,...
%C A237417 Putting the 1 aside in A093688, these could be called odiousfree numbers, and are a subsequence of A001969. A093696 would be the evilfree numbers then, and are a subsequence of A000069.
%H A237417 Robert Israel, <a href="/A237417/b237417.txt">Table of n, a(n) for n = 1..10000</a>
%F A237417 a(n) = A093688(k+1)*A093696(m).
%p A237417 N:= 200: # to get all terms <= N
%p A237417 Ofree:= {$2..N}: Efree:= {$1..N/3}:
%p A237417 for n from 2 to N do
%p A237417   t:= convert(convert(n,base,2),`+`) mod 2;
%p A237417   if t = 0 then Efree:= Efree minus {seq(i,i=n..N/3,n)}
%p A237417   else Ofree:= Ofree minus {seq(i,i=n..N,n)}
%p A237417   fi
%p A237417 od:
%p A237417 sort(convert(select(`<=`,{seq(seq(s*t,s=Ofree),t=Efree)},N),list)); # _Robert Israel_, May 09 2019
%t A237417 odFreeQ[n_] := AllTrue[Rest @ Divisors[n], EvenQ[DigitCount[#, 2, 1]] &]; evFreeQ[n_] := AllTrue[Divisors[n], OddQ[DigitCount[#, 2, 1]] &]; m = 100; o = Select[Range[2, m], odFreeQ]; e = Select[Range[m], evFreeQ]; Union @ Select[Times @@@ Tuples[{o, e}], # <= m &] (* _Amiram Eldar_, Oct 16 2020 *)
%o A237417 (PARI) isA093696(n)= fordiv(n, d, if(hammingweight(d)%2==0, return(0))); 1;
%o A237417 isA093688(n)= if (n==1, 0, sumdiv(n, d, hammingweight(d)%2)==1);
%o A237417 lista(nn) = {vn = vector(2*nn, i, i); vof = select(n->isA093696(n), vn); vef = select(n->isA093688(n), vn); vp = []; for (i = 1, #vof, for (j = 1, #vef, vp = Set(concat(vp, vof[i]*vef[j])););); for (i = 1, #vp, if (vp[i] <= nn, print1(vp[i], ", ")););} \\ _Michel Marcus_, Mar 05 2014
%Y A237417 Cf. A093688, A093696.
%K A237417 nonn,base
%O A237417 1,1
%A A237417 _Irina Gerasimova_, Feb 23 2014, following a suggestion from _Juri-Stepan Gerasimov_
%E A237417 Definition corrected by _Jon E. Schoenfield_, Feb 26 2014