cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237423 Primes p such that prime(prime(p^2)) - 2 is also prime.

This page as a plain text file.
%I A237423 #11 Feb 11 2014 16:48:35
%S A237423 13,17,167,179,211,223,337,373,541,661,743,751,1063,1129,1217,1607,
%T A237423 1697,1741,1913,2017,2039,2083,2293,2389,2447,2459,2543,2677,2693,
%U A237423 2711,2851,2909,3083,3191,3209,3259,3571,3889,3917
%N A237423 Primes p such that prime(prime(p^2)) - 2 is also prime.
%H A237423 K. D. Bajpai, <a href="/A237423/b237423.txt">Table of n, a(n) for n = 1..155</a>
%e A237423 13 is prime and appears in the sequence because  prime(prime(13^2)) - 2  = 8009 which is also prime.
%e A237423 17 is prime and appears in the sequence because  prime(prime(17^2)) - 2  = 16139 which is also prime.
%p A237423 KD := proc() local a,b;  a:=ithprime(n);  b:=ithprime(ithprime(a^2))-2;  if isprime (b) then RETURN (a); fi;  end: seq(KD(), n=1..500);
%t A237423 p[n_] := PrimeQ[Prime[Prime[n^2]] - 2]; n = 0; Do[If[p[Prime[m]], n = n + 1; Print[n, " ", Prime[m]]], {m, 1000}] (* Bajpai *)
%t A237423 Select[Prime[Range[105]], PrimeQ[Prime[Prime[#^2]] - 2] &] (* _Wouter Meeussen_, Feb 09 2014 *)
%Y A237423 Cf. A000040, A234695, A236119, A236687, A236688, A237283
%K A237423 nonn,base,less
%O A237423 1,1
%A A237423 _K. D. Bajpai_, Feb 07 2014