cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237428 Numbers k with following property: List all proper divisors of k. Replace any composite number in the list with its proper divisors. Repeat. Sum of remaining numbers (1's and primes) is equal to k.

This page as a plain text file.
%I A237428 #32 Jun 29 2025 01:06:29
%S A237428 6,126,3808,19360,104320,4317184,126764640,1920554064,3710312448
%N A237428 Numbers k with following property: List all proper divisors of k. Replace any composite number in the list with its proper divisors. Repeat. Sum of remaining numbers (1's and primes) is equal to k.
%C A237428 Is there a largest term? Is there any odd term?
%C A237428 a(8) if it exists is greater than 10^9. - _Giovanni Resta_, Feb 07 2014
%C A237428 Composite numbers k such that k = A074206(k) + Sum_{p|k} (p-1)*A074206(k/p). - _Charlie Neder_, Jun 02 2019
%e A237428 6 is a term because: 1 + 2 + 3 = 6.
%e A237428 126 is a term because: [1 + 2 + 3 + (6 - 6) + 7 + (9 - 9) + (14 - 14) + (18 - 18) + (21 - 21) + (42 - 42) + (63 - 63)] + [1 + 2 + 3] + [1 + 3] + [1 + 2 + 7] + [1 + 2 + 3 + (6 - 6) + (9 - 9)] + [1 + 3 + 7] + [1 + 2 + 3 + (6 - 6) + 7 + (14 - 14) + (21 - 21)] + [1 + 3 + 7 + (9 - 9) + (21 - 21)] + [1 + 2 + 3] + [1 + 3] + [1 + 2 + 3] + [1 + 2 + 7] + [1 + 3 + 7] + [1 + 3] + [1 + 3 + 7] = 126.
%t A237428 v[n_] := If[PrimeQ@n, 1, Block[{s = Sum[If[e == 1 || PrimeQ@e, e, v@e], {e, Most@ Divisors@n}]}, If[n < 1000, v[n] = s, s]]]; Select[Range@ 20000, # == v@# &] (* _Giovanni Resta_, Feb 07 2014 *)
%Y A237428 Cf. A000203, A000396, A001065, A002033, A032741, A074206, A191150.
%K A237428 nonn,more
%O A237428 1,1
%A A237428 _Lechoslaw Ratajczak_, Feb 07 2014
%E A237428 a(6)-a(7) from _Giovanni Resta_, Feb 07 2014
%E A237428 a(8)-a(9) from _Amiram Eldar_, Jun 28 2025