cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237430 Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with two-fold rotational symmetry (and no other symmetry).

This page as a plain text file.
%I A237430 #13 Jun 30 2023 10:26:01
%S A237430 0,0,5,366,129871,174041330,1343294003351,41725919954578785,
%T A237430 7159149948562719664049,5065741493544986113047994120
%N A237430 Number of nonisomorphic Hamiltonian cycles on 2n X 2n square grid of points with two-fold rotational symmetry (and no other symmetry).
%H A237430 Ed Wynn, <a href="http://arxiv.org/abs/1402.0545">Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs</a>, arXiv:1402.0545 [math.CO], 2014.
%F A237430 a(n) = A227257(n) - A237429(n).
%e A237430 An example of each isomorphism class for n=3.
%e A237430   o-o-o-o-o-o   o-o-o-o-o-o   o-o-o-o-o-o   o-o-o-o o-o   o-o-o-o o-o
%e A237430   |         |   |         |   |         |   |     | | |   |     | | |
%e A237430   o-o-o-o o-o   o o-o-o-o-o   o o-o o-o-o   o-o o-o o o   o o-o o-o o
%e A237430         | |     | |           | | | |         | |   | |   | | |     |
%e A237430   o-o-o-o o-o   o o-o-o-o-o   o o o o o-o   o-o o-o-o o   o-o o o-o-o
%e A237430   |         |   |         |   | | | | | |   |         |       | |
%e A237430   o-o o-o-o-o   o-o-o-o-o o   o-o o o o o   o o-o-o o-o   o-o-o o o-o
%e A237430     | |                 | |       | | | |   | |   | |     |     | | |
%e A237430   o-o o-o-o-o   o-o-o-o-o o   o-o-o o-o o   o o o-o o-o   o o-o o-o o
%e A237430   |         |   |         |   |         |   | | |     |   | | |     |
%e A237430   o-o-o-o-o-o   o-o-o-o-o-o   o-o-o-o-o-o   o-o o-o-o-o   o-o o-o-o-o
%Y A237430 Cf. A209077, A227257, A237429.
%K A237430 nonn,walk,more
%O A237430 1,3
%A A237430 _Ed Wynn_, Feb 07 2014