cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237432 Number of nonisomorphic Hamiltonian cycles on (4n-2) X (4n-2) square grid of points with four-fold rotational symmetry (and no other symmetry).

This page as a plain text file.
%I A237432 #24 Jun 30 2023 10:33:13
%S A237432 0,1,102,255359,15504309761,21955745395591600,
%T A237432 712319733455900182066337,524246290066954425217045809870657
%N A237432 Number of nonisomorphic Hamiltonian cycles on (4n-2) X (4n-2) square grid of points with four-fold rotational symmetry (and no other symmetry).
%C A237432 For square grids of m X m points, there are solutions only for m = (4n-2).
%H A237432 Ed Wynn, <a href="http://arxiv.org/abs/1402.0545">Enumeration of nonisomorphic Hamiltonian cycles on square grid graphs</a>, arXiv:1402.0545 [math.CO], 2014.
%F A237432 a(n) = A238819(n-1) / 2 for n > 1. - _Andrew Howroyd_, Apr 06 2016
%e A237432 The two cycles counted as a single class for n=2. These are isomorphic (here meaning isomorphic under the full symmetry group of the square), since each is a reflection of the other.
%e A237432   o-o o-o-o-o  o-o-o-o o-o
%e A237432   | | |     |  |     | | |
%e A237432   o o o o-o-o  o-o-o o o o
%e A237432   | | | |          | | | |
%e A237432   o o-o o-o-o  o-o-o o-o o
%e A237432   |         |  |         |
%e A237432   o-o-o o-o o  o o-o o-o-o
%e A237432       | | | |  | | | |
%e A237432   o-o-o o o o  o o o o-o-o
%e A237432   |     | | |  | | |     |
%e A237432   o-o-o-o o-o  o-o o-o-o-o
%Y A237432 Cf. A209077, A227005, A237431.
%K A237432 nonn,walk,hard,more
%O A237432 1,3
%A A237432 _Ed Wynn_, Feb 07 2014
%E A237432 a(6)-a(8) from _Andrew Howroyd_, Apr 06 2016