A237436 Least prime p > prime(n+1) such that p is a square mod the first n odd primes 3, 5, 7, 11, ..., prime(n+1).
7, 19, 79, 331, 751, 1171, 7459, 10651, 18379, 78439, 78439, 399499, 644869, 1427911, 1427911, 4355311, 5715319, 43030381, 43030381, 163384621
Offset: 1
Keywords
Examples
Let f(p) = list of Legendre (p|q) for q = 3, 5, 7, 11, 13, 17, 19, 23, ... Then f(p) is p=3: 0, -1, -1, 1, 1, -1, -1, 1, ... p=5: -1, 0, -1, 1, -1, -1, 1, -1, ... p=7: 1, -1, 0, -1, -1, -1, 1, -1, ... p=11: -1, 1, 1, 0, -1, -1, 1, -1, ... p=13: 1, -1, -1, -1, 0, 1, -1, 1, ... p=17: -1, -1, -1, -1, 1, 0, 1, -1, ... p=19: 1, 1, -1, -1, -1, 1, 0, -1, ... f(7) is the first list that begins with 1, so a(1) = 7. f(19) is the first list that begins with 1, 1, so a(2) = 19.
Links
- Wikipedia, Legendre symbol
- Wikipedia, Quadratic residue
Programs
-
Mathematica
Table[p = Prime[n+2]; While[Length[Select[Prime[Range[2, n + 1]], JacobiSymbol[p, #] == 1 &]] < n, p = NextPrime[p]]; p, {n, 1, 18}]
Comments