cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237441 Quintuple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))) and f(f(f(f(f(p))))) are also primes.

This page as a plain text file.
%I A237441 #17 Feb 08 2014 21:59:16
%S A237441 2,3,5,7,61,101,196853,516151,548239,568627,595039,603833,648887,
%T A237441 1996223,2086907,2487227,3322757,3711343,4385137,5226049,5288929,
%U A237441 5853241,8792039,8796187,8982191,10203203,12640297,12664129,12845561,13156267,13437481,14342431
%N A237441 Quintuple Hex-primes: let f(n) = A102489(n); then sequence lists primes p such that f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))) and f(f(f(f(f(p))))) are also primes.
%C A237441 The sequence is a subset of A103144, A237438, A237439 and A237440
%e A237441 Dec61=prime -> Hex61=Dec97=prime -> Hex97=Dec151=prime -> Hex151=Dec337=prime -> Hex337=Dec823=prime -> Hex823=Dec2083=prime.
%o A237441 (PARI) hd(n) = my(d = digits(n)); sum(i=1, #d, 16^(i-1)*d[#d-i+1]);
%o A237441 isok(p) = isprime(p) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)) && isprime(p=hd(p)); \\ _Michel Marcus_, Feb 08 2014
%Y A237441 Cf. A102489
%Y A237441 Cf. A103144(Hex-primes), A237438(Double Hex-primes), A237439(Triple Hex-primes), A237440(Quadruple Hex-primes).
%K A237441 nonn,base
%O A237441 1,1
%A A237441 _Andreas Boe_, Feb 07 2014
%E A237441 More terms from _Michel Marcus_, Feb 08 2014