cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237444 Triangle read by rows, T(n,k) is difference of column sum and row sum of natural numbers filled in n x n square.

This page as a plain text file.
%I A237444 #17 Nov 02 2021 06:32:57
%S A237444 0,1,-1,6,0,-6,18,6,-6,-18,40,20,0,-20,-40,75,45,15,-15,-45,-75,126,
%T A237444 84,42,0,-42,-84,-126,196,140,84,28,-28,-84,-140,-196,288,216,144,72,
%U A237444 0,-72,-144,-216,-288,405,315,225,135,45,-45,-135,-225,-315,-405,550,440,330,220,110,0,-110,-220,-330,-440,-550,726,594,462,330,198,66,-66
%N A237444 Triangle read by rows, T(n,k) is difference of column sum and row sum of natural numbers filled in n x n square.
%C A237444 See illustration in links for construction rule.
%C A237444 Column 1 = A002411.
%C A237444 Column 2 = A005564 ,for n >= 3.
%C A237444 Column 3 first differences = A140091.
%C A237444 Nonnegative numbers of this sequence are given by A082375(n,k)*A000217(n), (see example). - _Philippe Deléham_, Feb 08 2014
%H A237444 Kival Ngaokrajang, <a href="/A237444/a237444.pdf">Illustration for n = 1..5</a>
%F A237444 T(n,k) = - T(n,n-k+1), T(2n+1,n+1)= 0. - _Philippe Deléham_, Feb 08 2014
%F A237444 T(n+1,k+1) = A114327(n,k)*A000217(n). - _Philippe Deléham_, Feb 08 2014
%e A237444 Triangle begins:
%e A237444 n/k   1   2   3   4  5    6   7    8    9   ...
%e A237444 1   0
%e A237444 2   1  -1
%e A237444 3   6   0  -6
%e A237444 4  18   6  -6  18
%e A237444 5  40  20   0 -20 -40
%e A237444 6  75  45  15 -15 -45 -75
%e A237444 7 126  84  42   0 -42 -84 -126
%e A237444 8 196 140  84  28 -28 -84 -140 -196
%e A237444 9 288 216 144  72   0 -72 -144 -216 -288  ...
%e A237444 ...
%e A237444 A082375 begins:
%e A237444 0;
%e A237444 1;
%e A237444 2, 0;
%e A237444 3, 1;
%e A237444 4, 2, 0;
%e A237444 5, 3, 1;
%e A237444 6, 4, 2, 0;
%e A237444 7, 5, 3, 1;
%e A237444 8, 6, 4, 2, 0;
%e A237444 9, 7, 5, 3, 1;
%e A237444 .....
%e A237444 A000217 (triangular numbers) begins:
%e A237444 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...
%e A237444 A082375(n,k)*A000217(n) begins:
%e A237444 0;
%e A237444 1;
%e A237444 6, 0;
%e A237444 18, 6;
%e A237444 40, 20, 0;
%e A237444 75, 45, 15;
%e A237444 126, 84, 42, 0;
%e A237444 196, 140, 84, 28;
%e A237444 288, 216, 144, 72, 0;
%e A237444 405, 315, 225, 135, 45;
%e A237444 ... - _Philippe Deléham_, Feb 08 2014
%o A237444 (Small Basic)
%o A237444 For n = 1 to 20
%o A237444 For n1 = 1 To n
%o A237444 c = 0
%o A237444 r = 0
%o A237444   For n2 = 1+n*(n1-1) To n+n*(n1-1)
%o A237444     c = c + n2
%o A237444   Endfor
%o A237444   For n3 = n1 To n1+n*(n-1) Step n
%o A237444     r = r + n3
%o A237444   EndFor
%o A237444 a = r - c
%o A237444 TextWindow.Write(a+", ")
%o A237444 EndFor
%o A237444 EndFor
%Y A237444 Cf. A000217, A002411, A005564, A114327, A140091.
%K A237444 sign,tabl
%O A237444 1,4
%A A237444 _Kival Ngaokrajang_, Feb 08 2014