This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237444 #17 Nov 02 2021 06:32:57 %S A237444 0,1,-1,6,0,-6,18,6,-6,-18,40,20,0,-20,-40,75,45,15,-15,-45,-75,126, %T A237444 84,42,0,-42,-84,-126,196,140,84,28,-28,-84,-140,-196,288,216,144,72, %U A237444 0,-72,-144,-216,-288,405,315,225,135,45,-45,-135,-225,-315,-405,550,440,330,220,110,0,-110,-220,-330,-440,-550,726,594,462,330,198,66,-66 %N A237444 Triangle read by rows, T(n,k) is difference of column sum and row sum of natural numbers filled in n x n square. %C A237444 See illustration in links for construction rule. %C A237444 Column 1 = A002411. %C A237444 Column 2 = A005564 ,for n >= 3. %C A237444 Column 3 first differences = A140091. %C A237444 Nonnegative numbers of this sequence are given by A082375(n,k)*A000217(n), (see example). - _Philippe Deléham_, Feb 08 2014 %H A237444 Kival Ngaokrajang, <a href="/A237444/a237444.pdf">Illustration for n = 1..5</a> %F A237444 T(n,k) = - T(n,n-k+1), T(2n+1,n+1)= 0. - _Philippe Deléham_, Feb 08 2014 %F A237444 T(n+1,k+1) = A114327(n,k)*A000217(n). - _Philippe Deléham_, Feb 08 2014 %e A237444 Triangle begins: %e A237444 n/k 1 2 3 4 5 6 7 8 9 ... %e A237444 1 0 %e A237444 2 1 -1 %e A237444 3 6 0 -6 %e A237444 4 18 6 -6 18 %e A237444 5 40 20 0 -20 -40 %e A237444 6 75 45 15 -15 -45 -75 %e A237444 7 126 84 42 0 -42 -84 -126 %e A237444 8 196 140 84 28 -28 -84 -140 -196 %e A237444 9 288 216 144 72 0 -72 -144 -216 -288 ... %e A237444 ... %e A237444 A082375 begins: %e A237444 0; %e A237444 1; %e A237444 2, 0; %e A237444 3, 1; %e A237444 4, 2, 0; %e A237444 5, 3, 1; %e A237444 6, 4, 2, 0; %e A237444 7, 5, 3, 1; %e A237444 8, 6, 4, 2, 0; %e A237444 9, 7, 5, 3, 1; %e A237444 ..... %e A237444 A000217 (triangular numbers) begins: %e A237444 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ... %e A237444 A082375(n,k)*A000217(n) begins: %e A237444 0; %e A237444 1; %e A237444 6, 0; %e A237444 18, 6; %e A237444 40, 20, 0; %e A237444 75, 45, 15; %e A237444 126, 84, 42, 0; %e A237444 196, 140, 84, 28; %e A237444 288, 216, 144, 72, 0; %e A237444 405, 315, 225, 135, 45; %e A237444 ... - _Philippe Deléham_, Feb 08 2014 %o A237444 (Small Basic) %o A237444 For n = 1 to 20 %o A237444 For n1 = 1 To n %o A237444 c = 0 %o A237444 r = 0 %o A237444 For n2 = 1+n*(n1-1) To n+n*(n1-1) %o A237444 c = c + n2 %o A237444 Endfor %o A237444 For n3 = n1 To n1+n*(n-1) Step n %o A237444 r = r + n3 %o A237444 EndFor %o A237444 a = r - c %o A237444 TextWindow.Write(a+", ") %o A237444 EndFor %o A237444 EndFor %Y A237444 Cf. A000217, A002411, A005564, A114327, A140091. %K A237444 sign,tabl %O A237444 1,4 %A A237444 _Kival Ngaokrajang_, Feb 08 2014