cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237446 Primes p such that f(f(p)) is prime where f(x) = Phi_6(x).

Original entry on oeis.org

29, 197, 673, 2297, 3613, 5923, 6133, 6917, 8219, 13553, 15667, 17137, 21911, 30941, 33587, 35407, 38053, 44017, 45557, 46663, 51241, 53453, 65731, 67187, 82349, 94151, 115361, 132287, 143711, 164011, 164291, 165523, 178613, 180797, 182141
Offset: 1

Views

Author

Derek Orr, Feb 08 2014

Keywords

Comments

Phi_k(x) is the k-th cyclotomic polynomial, see A013595 or A013596.

Examples

			29 is prime and f(29^6+29^5+29^4+29^3+29^2+29+1) = 54672347801779330810964871392077416495507203132755717 is prime. Thus, 29 is a member of this sequence.
		

Crossrefs

Programs

  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**6) if isprime(n) and isprime((n**6+n**5+n**4+n**3+n**2+n+1)**6+(n**6+n**5+n**4+n**3+n**2+n+1)**5+(n**6+n**5+n**4+n**3+n**2+n+1)**4+(n**6+n**5+n**4+n**3+n**2+n+1)**3+(n**6+n**5+n**4+n**3+n**2+n+1)**2+(n**6+n**5+n**4+n**3+n**2+n+1)+1)}