This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237450 #23 Sep 28 2020 07:45:17 %S A237450 1,2,3,4,6,8,10,16,22,28,34,58,82,106,130,154,274,394,514,634,754,874, %T A237450 1594,2314,3034,3754,4474,5194,5914,10954,15994,21034,26074,31114, %U A237450 36154,41194,46234,86554,126874,167194,207514,247834,288154,328474,368794,409114,771994,1134874,1497754,1860634,2223514,2586394,2949274,3312154,3675034 %N A237450 Triangle read by rows, T(n,k) = !n + (k-1)*(n-1)!, with n>=1, 1<=k<=n; Position of the first n-letter permutation beginning with number k in the list of lexicographically sorted permutations A030299. %C A237450 When organized as a triangular table %C A237450 1; %C A237450 2, 3; %C A237450 4, 6, 8; %C A237450 10, 16, 22, 28; %C A237450 34, 58, 82, 106, 130; %C A237450 ... %C A237450 the k-th term of row n gives the position of the first n-letter permutation beginning with number k among all the lexicographically ordered permutations A030299. Thus the terms give the positions of rows of irregular table A237265 among the rows of A030298. %C A237450 Note: the notation !n stands for the left factorial, A003422(n). %H A237450 Antti Karttunen, <a href="/A237450/b237450.txt">Rows 1..45 of the triangular table, flattened</a> %F A237450 a(n) = A003422(A002024(n)) + (A002262(n-1)*A000142(A002024(n)-1)). %t A237450 lf[n_] := lf[n] = (-1)^n n! Subfactorial[-n - 1] - Subfactorial[-1] // FullSimplify; %t A237450 T[n_, k_] := lf[n] + (k - 1)(n - 1)!; %t A237450 Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten %o A237450 (Scheme) (define (A237450 n) (+ (A003422 (A002024 n)) (* (A002262 (- n 1)) (A000142 (- (A002024 n) 1))))) %Y A237450 Left edge: A003422. %Y A237450 Cf. also A002024, A002262, A000142, A030298, A030299, A051683, A237265. %K A237450 nonn,tabl %O A237450 1,2 %A A237450 _Antti Karttunen_, Feb 08 2014