cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237453 Number of primes p < n with p*n + pi(p) prime, where pi(.) is given by A000720.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 3, 2, 2, 2, 2, 3, 2, 1, 2, 1, 2, 3, 3, 2, 3, 1, 1, 1, 3, 2, 4, 3, 3, 3, 2, 1, 2, 1, 1, 3, 3, 1, 2, 3, 3, 3, 4, 3, 3, 2, 2, 6, 4, 3, 5, 3, 2, 3, 2, 4, 4, 3, 1, 3, 5, 2, 5, 3, 1, 2, 3, 2, 4, 2, 3, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 08 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 4, and a(n) = 1 for no n > 144. Moreover, for any positive integer n, there is a prime p < sqrt(2*n)*log(5n) with p*n + pi(p) prime.
(ii) For each integer n > 8, there is a prime p <= n + 1 with (p-1)*n - pi(p-1) prime.
(iii) For every n = 1, 2, 3, ... there is a positive integer k < 3*sqrt(n) with k*n + prime(k) prime.
(iv) For each n > 13, there is a positive integer k < n with k*n + prime(n-k) prime.
We have verified that a(n) > 0 for all n = 5, ..., 10^8.

Examples

			a(3) = 1 since 2 and 2*3 + pi(2) = 6 + 1 = 7 are both prime.
a(10) = 1 since 5 and 5*10 + pi(5) = 50 + 3 = 53 are both prime.
a(107) = 1 since 89 and 89*107 + pi(89) = 9523 + 24 = 9547 are both prime.
a(144) = 1 since 59 and 59*144 + pi(59) = 8496 + 17 = 8513 are both prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[Prime[k]*n+k],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,80}]
  • PARI
    vector(100, n, sum(k=1, primepi(n-1), isprime(prime(k)*n+k))) \\ Colin Barker, Feb 08 2014