A237515 Decimal expansion of the sum of reciprocals of the strict partition function (the function giving the number of partitions of an integer into distinct parts).
4, 6, 7, 3, 4, 4, 4, 5, 7, 9, 3, 1, 6, 3, 4, 5, 1, 7, 5, 0, 3, 3, 4, 1, 7, 4, 3, 4, 6, 1, 1, 3, 0, 5, 3, 9, 8, 5, 8, 9, 7, 0, 3, 9, 9, 3, 6, 9, 8, 9, 3, 1, 2, 3, 8, 6, 7, 4, 0, 5, 2, 2, 0, 2, 1, 5, 6, 9, 9, 9, 5, 7, 1, 2, 2, 0, 1, 9, 7, 0, 7, 7, 3, 4, 6, 2, 5, 0, 3, 9, 7, 7, 3, 1, 7, 1, 7, 4, 8, 5
Offset: 1
Examples
4.6734445793163451750334174346113053985897...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 1..750 (terms 1..100 from Jean-Francois Alcover)
Programs
-
Mathematica
digits = 100; NSum[1/PartitionsQ[n], {n, 1, Infinity}, NSumTerms -> 15000, WorkingPrecision -> digits+1] // RealDigits[#, 10, digits]& // First
Formula
Sum_{n>=1} 1/A000009(n). - Vaclav Kotesovec, Dec 08 2015
Comments