This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237526 #31 Jul 19 2024 14:25:21 %S A237526 0,0,1,1,1,3,3,3,4,4,6,6,6,8,8,8,8,10,11,11,13,13,13,13,13,15,17,17, %T A237526 17,19,19,19,20,20,22,22,22,24,24,24,26,28,28,28,28,30,30,30,30,30,33, %U A237526 33,35,37,37,37,37,37,39,39,39,41,41,41,41,45,45,45,47,47 %N A237526 a(n) = number of unit squares in the first quadrant of a disk of radius sqrt(n) centered at the origin of a square lattice. %H A237526 Stefano Spezia, <a href="/A237526/b237526.txt">Table of n, a(n) for n = 0..10000</a> %F A237526 a(A000404(n)) = A232499(n). %F A237526 a(n) = Sum_{k=1..floor(sqrt(n))} floor(sqrt(n-k^2)). - _M. F. Hasler_, Feb 09 2014 %F A237526 G.f.: (theta_3(x) - 1)^2/(4*(1 - x)), where theta_3() is the Jacobi theta function. - _Ilya Gutkovskiy_, Apr 17 2018 %F A237526 For n > 1, Pi*(n+2-sqrt(8n)) < a(n) < Pi*n. (This is trivial and can probably be improved by methods like Euler-Maclaurin and perhaps even a modification of the Dirichlet hyperbola method.) - _Charles R Greathouse IV_, Jul 17 2024 %t A237526 a[n_]:=Sum[Floor[Sqrt[n-k^2]],{k,Floor[Sqrt[n]]}]; Array[a,70,0] (* _Stefano Spezia_, Jul 19 2024 *) %o A237526 (PARI) A237526(n)=sum(k=1,sqrtint(n),sqrtint(n-k^2)) \\ _M. F. Hasler_, Feb 09 2014 %o A237526 (Python) %o A237526 from math import isqrt %o A237526 def A237526(n): return sum(isqrt(n-k**2) for k in range(1,isqrt(n)+1)) # _Chai Wah Wu_, Jul 18 2024 %Y A237526 Cf. A000404, A001481, A057961, A232499. %Y A237526 Partial sums of A063725. %K A237526 nonn %O A237526 0,6 %A A237526 _L. Edson Jeffery_, Feb 09 2014