This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237527 #14 Mar 01 2014 13:19:50 %S A237527 5,155,505,2755,3421,6805,11341,27721,29755,31861,44309,49505,52211, %T A237527 65791,100171,121451,134321,185329,195805,236681,252505,258571,292139, %U A237527 325469,375155,380071,452255,457651,465805,563249,676505,1041419,1061929 %N A237527 Numbers n of the form p^2-p-1 = A165900(p), for prime p, such that n^2-n-1 = A165900(n) is also prime. %C A237527 All numbers are congruent to 1 mod 10, 5 mod 10, or 9 mod 10. %C A237527 A subsequence of A165900 and A028387. - _M. F. Hasler_, Mar 01 2014 %F A237527 a(n) = A165900(A230026(n)). - _M. F. Hasler_, Mar 01 2014 %e A237527 5 = 3^2-3-1 (3 is prime) and 5^2-5-1 = 19 is also prime. So, 5 is a member of this sequence. %o A237527 (Python) %o A237527 import sympy %o A237527 from sympy import isprime %o A237527 {print(n**2-n-1) for n in range(10**4) if isprime(n) and isprime((n**2-n-1)**2-(n**2-n-1)-1)} %o A237527 (PARI) s=[]; forprime(p=2, 40000, n=p^2-p-1; if(isprime(n^2-n-1), s=concat(s, n))); s \\ _Colin Barker_, Feb 10 2014 %Y A237527 Cf. A237360, A039914, A002327. %K A237527 nonn %O A237527 1,1 %A A237527 _Derek Orr_, Feb 09 2014