A237531 a(n) = |{0 < k < n/2: phi(k*(n-k)) - 1 and phi(k*(n-k)) + 1 are both prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 2, 2, 2, 3, 2, 3, 1, 3, 1, 4, 1, 1, 1, 1, 4, 3, 2, 1, 2, 1, 1, 3, 2, 5, 4, 3, 3, 6, 2, 3, 1, 5, 4, 5, 2, 3, 5, 5, 3, 7, 6, 3, 7, 3, 8, 7, 4, 4, 5, 6, 4, 3, 9, 6, 8, 9, 8, 9, 9, 10, 7, 6, 3, 5, 4, 8, 4, 8, 5, 10, 2, 7, 9, 5, 7
Offset: 1
Keywords
Examples
a(12) = 1 since 12 = 3 + 9 with phi(3*9) - 1 = 17 and phi(3*9) + 1 = 19 both prime. a(19) = 1 since 19 = 1 + 18 with phi(1*18) - 1 = 5 and phi(1*18) + 1 = 7 both prime. a(86) = 1 since 86 = 8 + 78 with phi(8*78) - 1 = 191 and phi(8*78) + 1 = 193 both prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..5000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
p[n_]:=PrimeQ[EulerPhi[n]-1]&&PrimeQ[EulerPhi[n]+1] a[n_]:=Sum[If[p[k(n-k)],1,0],{k,1,(n-1)/2}] Table[a[n],{n,1,80}]
Comments