cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237582 a(n) = |{0 < k < n: pi(n + k^2) is prime}|, where pi(.) is given by A000720.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 3, 2, 3, 4, 1, 2, 2, 3, 6, 6, 5, 5, 5, 5, 6, 7, 7, 6, 5, 6, 5, 6, 7, 8, 9, 8, 10, 9, 8, 6, 6, 6, 6, 7, 9, 9, 10, 11, 11, 13, 11, 9, 9, 10, 10, 8, 6, 6, 5, 4, 8, 9, 10, 12, 11, 14, 15, 15, 15, 12, 14, 15, 17, 16, 13, 11, 11, 13, 16, 18, 24, 25, 20
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 09 2014

Keywords

Comments

Conjecture: (i) For each a = 2, 3, ... there is a positive integer N(a) such that for any integer n > N(a) there is a positive integer k < n with pi(n + k^a) prime. In particular, we may take (N(2), N(3), ..., N(9)) = (1, 1, 9, 26, 8, 9, 18, 1).
(ii) If n > 6, then pi(n^2 + k^2) is prime for some 0 < k < n. If n > 27, then pi(n^3 + k^3) is prime for some 0 < k < n. In general, for each a = 2, 3, ..., if n is sufficiently large then pi(n^a + k^a) is prime for some 0 < k < n.
For any integer n > 1, it is easy to show that pi(n + k) is prime for some 0 < k < n.

Examples

			a(5) = 1 since pi(5 + 1^2) = 3 is prime.
a(6) = 1 since pi(6 + 5^2) = pi(31) = 11 is prime.
a(9) = 2 since pi(9 + 3^2) = pi(18) = 7 and pi(9 + 5^2) = pi(34) = 11 are both prime.
a(12) = 1 since pi(12 + 10^2) = pi(112) = 29 is prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[PrimePi[n]]
    a[n_]:=Sum[If[p[n+k^2],1,0],{k,1,n-1}]
    Table[a[n],{n,1,80}]