cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237588 Sigma(n) - 2n + 1.

This page as a plain text file.
%I A237588 #33 Sep 08 2022 08:46:06
%S A237588 0,0,-1,0,-3,1,-5,0,-4,-1,-9,5,-11,-3,-5,0,-15,4,-17,3,-9,-7,-21,13,
%T A237588 -18,-9,-13,1,-27,13,-29,0,-17,-13,-21,20,-35,-15,-21,11,-39,13,-41,
%U A237588 -3,-11,-19,-45,29,-40,-6,-29,-5,-51,13,-37,9,-33,-25,-57,49,-59,-27,-21,0
%N A237588 Sigma(n) - 2n + 1.
%C A237588 Also we can write Sigma(n) - (2n - 1).
%C A237588 a(n) = 2 - n iff n is prime.
%C A237588 a(n) = 1 iff n is a perfect number.
%C A237588 Conjecture: a(n) = 0 iff n is a power of 2.
%C A237588 The problem is not new. In fact, the following comments appeared on page 74 of Guy's book: "If Sigma(n) = 2*n - 1, n has been called almost perfect. Powers of 2 are almost perfect; it is not known if any other numbers are.". - _Zhi-Wei Sun_, Feb 23 2014
%D A237588 R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004.
%F A237588 a(n) = A000203(n) - A005408(n-1) = 1 - n + A001065(n) = 1 - A033879(n) = 1 + A033880(n) = (-1)*A235796(n).
%F A237588 a(n) = A088580(n) - 2*n. - _Omar E. Pol_, Mar 23 2014
%e A237588 -----------------------------------------------
%e A237588 .     The sum of       The positive
%e A237588 n    divisors of n     odd numbers        a(n)
%e A237588 -----------------------------------------------
%e A237588 1          1                1               0
%e A237588 2          3                3               0
%e A237588 3          4                5              -1
%e A237588 4          7                7               0
%e A237588 5          6                9              -3
%e A237588 6         12               11               1
%e A237588 7          8               13              -5
%e A237588 8         15               15               0
%e A237588 9         13               17              -4
%e A237588 10        18               19              -1
%e A237588 ...
%t A237588 Table[DivisorSigma[1,n]-2n+1,{n,70}] (* _Harvey P. Dale_, Nov 15 2014 *)
%o A237588 (PARI) vector(100, n, sigma(n)-2*n+1) \\ _Colin Barker_, Feb 21 2014
%o A237588 (Magma) [1-2*n+SumOfDivisors(n): n in [1..100]]; // _Vincenzo Librandi_, Feb 25 2014
%Y A237588 Cf. A000079, A000203, A000396, A001065, A004125, A005408, A033879, A033880, A039653, A120444, A196020, A235796, A236104.
%K A237588 sign
%O A237588 1,5
%A A237588 _Omar E. Pol_, Feb 20 2014