This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237590 #52 Dec 31 2020 11:11:15 %S A237590 1,2,4,5,7,8,10,11,14,16,18,19,21,23,26,27,29,30,32,33,37,39,41,42,45, %T A237590 47,51,52,54,55,57,58,62,64,67,68,70,72,76,77,79,80,82,84,87,89,91,92, %U A237590 95,98,102,104,106,107,111,112,116,118,120,121,123,125,130,131,135,136,138,140,144,147,149,150,152,154 %N A237590 a(n) is the total number of regions (or parts) after n-th stage in the diagram of the symmetries of sigma described in A236104. %C A237590 The total area (or total number of cells) of the diagram after n stages is equal to A024916(n), the sum of all divisors of all positive integers <= n. %C A237590 Note that the region between the virtual circumscribed square and the diagram is a symmetric polygon whose area is equal to A004125(n), see example. %C A237590 For more information see A237593 and A237270. %C A237590 a(n) is also the total number of terraces of the stepped pyramid with n levels described in A245092. - _Omar E. Pol_, Apr 20 2016 %H A237590 Robert Price, <a href="/A237590/b237590.txt">Table of n, a(n) for n = 1..5000</a> %H A237590 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr01.jpg">An infinite stepped pyramid</a> %H A237590 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr02.jpg">Diagram of the isosceles triangle A237593 before the 90-degree-zig-zag folding (rows: 1..28)</a> %H A237590 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpyr05.jpg">Perspective view of the stepped pyramid (first 16 levels)</a> %F A237590 a(n) = A317109(n) - A294723(n) + 1 (Euler's formula). - _Omar E. Pol_, Jul 21 2018 %e A237590 Illustration of initial terms: %e A237590 . _ _ _ _ %e A237590 . _ _ _ |_ _ _ |_ %e A237590 . _ _ _ |_ _ _| |_ _ _| |_ %e A237590 . _ _ |_ _ |_ |_ _ |_ _ |_ _ |_ _ | %e A237590 . _ _ |_ _|_ |_ _|_ | |_ _|_ | | |_ _|_ | | | %e A237590 . _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | | %e A237590 . |_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_| %e A237590 . %e A237590 . %e A237590 . 1 2 4 5 7 8 %e A237590 . %e A237590 For n = 6 the diagram contains 8 regions (or parts), so a(6) = 8. %e A237590 The sum of all divisors of all positive integers <= 6 is [1] + [1+2] + [1+3] + [1+2+4] + [1+5] + [1+2+3+6] = 33. On the other hand after 6 stages the sum of all parts of the diagram is [1] + [3] + [2+2] + [7] + [3+3] + [12] = 33, equaling the sum of all divisors of all positive integers <= 6. %e A237590 Note that the region between the virtual circumscribed square and the diagram is a symmetric polygon whose area is equal to A004125(6) = 3. %e A237590 From _Omar E. Pol_, Dec 25 2020: (Start) %e A237590 Illustration of the diagram after 29 stages (contain 215 vertices, 268 edges and 54 regions or parts): %e A237590 ._ _ _ _ _ _ _ _ _ _ _ _ _ _ _ %e A237590 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| %e A237590 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ | %e A237590 |_ _ _ _ _ _ _ _ _ _ _ _ _ _| | %e A237590 |_ _ _ _ _ _ _ _ _ _ _ _ _ | | %e A237590 |_ _ _ _ _ _ _ _ _ _ _ _ _| | | %e A237590 |_ _ _ _ _ _ _ _ _ _ _ _ | | |_ _ _ %e A237590 |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _ | %e A237590 |_ _ _ _ _ _ _ _ _ _ _ | | |_ _ | |_ %e A237590 |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_ |_ %e A237590 |_ _ _ _ _ _ _ _ _ _ | | |_ _| |_ %e A237590 |_ _ _ _ _ _ _ _ _ _| | |_ _ |_ |_ _ |_ _ %e A237590 |_ _ _ _ _ _ _ _ _ | |_ _ _| |_ | |_ _ | %e A237590 |_ _ _ _ _ _ _ _ _| | |_ _ |_ |_|_ _ | | %e A237590 |_ _ _ _ _ _ _ _ | |_ _ |_ _|_ | | | |_ _ _ _ _ _ %e A237590 |_ _ _ _ _ _ _ _| | | | |_ _ | |_|_ _ _ _ _ | | %e A237590 |_ _ _ _ _ _ _ | |_ _ |_ |_ | | |_ _ _ _ _ | | | | %e A237590 |_ _ _ _ _ _ _| |_ _ |_ |_ _ | | |_ _ _ _ _ | | | | | | %e A237590 |_ _ _ _ _ _ | |_ |_ |_ | |_|_ _ _ _ | | | | | | | | %e A237590 |_ _ _ _ _ _| |_ _| |_ | |_ _ _ _ | | | | | | | | | | %e A237590 |_ _ _ _ _ | |_ _ | |_ _ _ _ | | | | | | | | | | | | %e A237590 |_ _ _ _ _| |_ | |_|_ _ _ | | | | | | | | | | | | | | %e A237590 |_ _ _ _ |_ _|_ |_ _ _ | | | | | | | | | | | | | | | | %e A237590 |_ _ _ _| |_ | |_ _ _ | | | | | | | | | | | | | | | | | | %e A237590 |_ _ _ |_ |_|_ _ | | | | | | | | | | | | | | | | | | | | %e A237590 |_ _ _| |_ _ | | | | | | | | | | | | | | | | | | | | | | %e A237590 |_ _ |_ _ | | | | | | | | | | | | | | | | | | | | | | | | %e A237590 |_ _|_ | | | | | | | | | | | | | | | | | | | | | | | | | | %e A237590 |_ | | | | | | | | | | | | | | | | | | | | | | | | | | | | %e A237590 |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| %e A237590 . %e A237590 (End) %t A237590 (* total number of parts in the first n symmetric representations *) %t A237590 (* Function a237270[] is defined in A237270 *) %t A237590 (* variable "previous" represents the sum from 1 through m-1 *) %t A237590 a237590[previous_,{m_,n_}]:=Rest[FoldList[Plus[#1,Length[a237270[#2]]]&,previous,Range[m,n]]] %t A237590 a237590[n_]:=a237590[0,{1,n}] %t A237590 a237590[78] (* data *) %t A237590 (* _Hartmut F. W. Hoft_, Jul 07 2014 *) %Y A237590 Partial sums of A237271. %Y A237590 Compare with A060831 (analog for the diagram that contains subparts). %Y A237590 Cf. A000203, A004125, A024916, A196020, A236104, A235791, A237048, A237270, A237591, A237593, A239659, A239660, A239663, A239665, A239931-A239934, A245092, A244050, A244970, A262626, A317109. %K A237590 nonn %O A237590 1,2 %A A237590 _Omar E. Pol_, Mar 31 2014 %E A237590 Definition clarified by _Omar E. Pol_, Jul 21 2018