cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237598 a(n) = |{0 < k < prime(n): pi(k*n) is a square}|, where pi(.) is given by A000720.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 4, 3, 5, 2, 3, 5, 3, 6, 1, 2, 3, 3, 5, 3, 5, 2, 6, 4, 4, 5, 3, 6, 4, 3, 2, 5, 3, 4, 3, 4, 4, 3, 6, 4, 3, 4, 2, 1, 2, 9, 3, 4, 4, 4, 5, 7, 4, 7, 3, 6, 7, 3, 7, 7, 5, 1, 4, 5, 3, 3, 10, 5, 4, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 10 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0.
(ii) For each n > 9, there is a positive integer k < prime(n)/2 such that pi(k*n) is a triangular number.
See also A237612 for the least k > 0 with pi(k*n) a square.

Examples

			a(3) = 1 since pi(3*3) = 2^2 with 3 < prime(3) = 5.
a(6) = 2 since pi(4*6) = 3^2 with 4 < prime(6) = 13, and pi(9*6) =  4^2 with 9 < prime(6) = 13.
a(15) = 1 since pi(28*15) = 9^2 with 28 < prime(15) = 47.
a(62) = 1 since pi(68*62) = 24^2 with 68 < prime(62) = 293.
a(459) = 1 since pi(2544*459) = 301^2 with 2544 < prime(459) = 3253.
		

Crossrefs

Programs

  • Mathematica
    sq[n_]:=IntegerQ[Sqrt[PrimePi[n]]]
    a[n_]:=Sum[If[sq[k*n],1,0],{k,1,Prime[n]-1}]
    Table[a[n],{n,1,70}]