This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237621 #11 May 27 2022 08:11:15 %S A237621 1,1,1,0,0,1,0,-1,-1,1,0,0,-1,-2,1,0,0,1,0,-3,1,0,0,0,2,2,-4,1,0,0,0, %T A237621 -1,2,5,-5,1,0,0,0,0,-3,0,9,-6,1,0,0,0,0,1,-5,-5,14,-7,1,0,0,0,0,0,4, %U A237621 -5,-14,20,-8,1,0,0,0,0,0,-1,9,0,-28,27,-9,1 %N A237621 Riordan array (1+x, x*(1-x)); inverse of Riordan array A237619. %H A237621 G. C. Greubel, <a href="/A237621/b237621.txt">Rows n = 0..50 of the triangle, flattened</a> %F A237621 T(n,k) = T(n-1,k-1) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. %F A237621 Sum_{k=0..n} T(n, k) = A057079(n). %e A237621 Triangles begins: %e A237621 1; %e A237621 1, 1; %e A237621 0, 0, 1; %e A237621 0, -1, -1, 1; %e A237621 0, 0, -1, -2, 1; %e A237621 0, 0, 1, 0, -3, 1; %e A237621 0, 0, 0, 2, 2, -4, 1; %e A237621 0, 0, 0, -1, 2, 5, -5, 1; %e A237621 0, 0, 0, 0, -3, 0, 9, -6, 1; %e A237621 0, 0, 0, 0, 1, -5, -5, 14, -7, 1; %e A237621 ... %e A237621 Production matrix is: %e A237621 1, 1; %e A237621 -1, -1, 1; %e A237621 0, -1, -1, 1; %e A237621 -1, -2, -1, -1, 1; %e A237621 -2, -5, -2, -1, -1, 1; %e A237621 -6, -14, -5, -2, -1, -1, 1; %e A237621 -18, -42, -14, -5, -2, -1, -1, 1; %e A237621 -57, -132, -42, -14, -5, -2, -1, -1, 1; %e A237621 -186, -429, -132, -42, -14, -5, -2, -1, -1, 1; %e A237621 ... (columns are A126983 and A115140) %t A237621 T[n_, k_]:= T[n,k]= If[k<0 || k>n, 0, If[n<2, 1, T[n-1,k-1] - T[n-2,k-1] ]]; %t A237621 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, May 26 2022 *) %o A237621 (SageMath) %o A237621 def T(n,k): # T = A237621 %o A237621 if (k<0 or k>n): return 0 %o A237621 elif (n<2): return 1 %o A237621 else: return T(n-1, k-1) - T(n-2, k-1) %o A237621 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, May 26 2022 %Y A237621 Cf. A057079 (row sums), A237619. %K A237621 sign,tabl %O A237621 0,14 %A A237621 _Philippe Deléham_, Feb 10 2014