This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237639 #16 May 22 2025 10:21:36 %S A237639 41,56133395601,89362058601,590884122501,1275627652881,2775672202617, %T A237639 6212311361721,7534036143501,27344792789601,61180709716101, %U A237639 124857759197601,206926840439901,580608824590341,603653936046501,1442441423278281,1864059458505657 %N A237639 Numbers n = p^4-p^3-p^2-p-1 (for prime p) such that n^4-n^3-n^2-n-1 is prime. %C A237639 All numbers are congruent to 1 mod 10 or 7 mod 10. %C A237639 41 is the only prime in the sequence, since one of p, n, and n^4-n^3-n^2-n-1 must be divisible by 3. - _Charles R Greathouse IV_, Feb 11 2014 %e A237639 41 = 3^4-3^3-3^2-3^1-1 (3 is prime) and 41^4-41^3-41^2-41^1-1 = 2755117 is prime. So, 41 is a member of this sequence. %o A237639 (Python) %o A237639 import sympy %o A237639 from sympy import isprime %o A237639 def poly4(x): %o A237639 if isprime(x): %o A237639 f = x**4-x**3-x**2-x-1 %o A237639 if isprime(f**4-f**3-f**2-f-1): %o A237639 return True %o A237639 return False %o A237639 x = 1 %o A237639 while x < 10**5: %o A237639 if poly4(x): %o A237639 print(x**4-x**3-x**2-x-1) %o A237639 x += 1 %o A237639 (PARI) s=[]; forprime(p=2, 7000, n=p^4-p^3-p^2-p-1; if(isprime(n^4-n^3-n^2-n-1), s=concat(s, n))); s \\ _Colin Barker_, Feb 11 2014 %Y A237639 Cf. A125082. %K A237639 nonn %O A237639 1,1 %A A237639 _Derek Orr_, Feb 10 2014