A237643 Least positive integer m such that {A000720(k*n): k = 1, ..., m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
1, 2, 3, 8, 8, 12, 13, 14, 27, 25, 32, 25, 16, 23, 94, 41, 46, 67, 38, 60, 77, 55, 84, 46, 88, 79, 85, 113, 82, 155, 114, 141, 178, 132, 124, 176, 155, 96, 135, 176, 146, 148, 126, 125, 183, 191, 185, 194, 166, 261, 378, 230, 278, 203, 199, 161, 293, 286, 175, 274
Offset: 1
Keywords
Examples
a(4) = 8 since {A000720(4*k): k = 1, ..., 8} = {2, 4, 5, 6, 8, 9, 9, 11} contains a complete system of residues modulo 4, but {pi(4*k): k = 1, ..., 7} contains no integer congruent to 3 modulo 4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, On a^n+bn modulo m, preprint, arXiv:1312.1166 [math.NT], 2013-2014.
Programs
-
Mathematica
q[m_,n_]:=Length[Union[Table[Mod[PrimePi[k*n],n],{k,1,m}]]] Do[Do[If[q[m,n]==n,Print[n," ",m];Goto[aa]],{m,n,2*Prime[n]}]; Print[n," ",0];Label[aa];Continue,{n,1,60}]
Comments