This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237646 #9 May 03 2014 20:35:56 %S A237646 1,1,8,7,63,56,329,273,1736,1463,7511,6048,32585,26537,124440,97903, %T A237646 475287,377384,1658881,1281497,5783960,4502463,18825023,14322560, %U A237646 61171649,46849089,188181672,141332583,577889023,436556440,1696298665,1259742225,4970284200,3710541975,14019036535,10308494560 %N A237646 G.f.: exp( Sum_{n>=1} A163659(n^3)*x^n/n ), where x*exp(Sum_{n>=1} A163659(n)*x^n/n) = S(x) is the g.f. of Stern's diatomic series (A002487). %C A237646 Compare to the g.f. of A195586. %F A237646 G.f.: exp( Sum_{n>=1} A237649(n)*x^n/n ), where A237649(n) = A163659(n^3). %F A237646 G.f. A(x) satisfies: %F A237646 (1) A(x) = (1+x+x^2) * (1+x^2+x^4)^3 * A(x^2)^4. %F A237646 (2) A(x) = (1+x+x^2) * Product_{n>=0} ( 1 + x^(2*2^n) + x^(4*2^n) )^(7*4^n). %F A237646 (3) A(x) / A(-x) = (1+x+x^2) / (1-x+x^2). %F A237646 Bisections: let A(x) = B(x^2) + x*C(x^2), then %F A237646 (4) B(x) = (1+x) * C(x). %F A237646 (5) C(x) = (1+x+x^2)^7 * C(x^2)^4. %F A237646 (6) A(x) = (1+x+x^2) * C(x^2). %F A237646 (7) A(x)^7 = C(x) * C(x^2)^3. %F A237646 (8) A(x)^4 = C(x) / (1+x+x^2)^3. %F A237646 (9) A(x)^3 = ( C(x)/A(x) - C(x^2)^4/A(x^2)^4 ) / (6*x + 14*x^3 + 6*x^5). %e A237646 G.f.: A(x) = 1 + x + 8*x^2 + 7*x^3 + 63*x^4 + 56*x^5 + 329*x^6 + 273*x^7 +... %e A237646 where %e A237646 log(A(x)) = x + 15*x^2/2 - 2*x^3/3 + 127*x^4/4 + x^5/5 - 30*x^6/6 + x^7/7 + 1023*x^8/8 +...+ A237649(n)*x^n/n +... %e A237646 Bisections: let A(x) = B(x^2) + x*C(x^2), then: %e A237646 B(x) = 1 + 8*x + 63*x^2 + 329*x^3 + 1736*x^4 + 7511*x^5 + 32585*x^6 +... %e A237646 C(x) = 1 + 7*x + 56*x^2 + 273*x^3 + 1463*x^4 + 6048*x^5 + 26537*x^6 + 97903*x^7 + 377384*x^8 + 1281497*x^9 + 4502463*x^10 +...+ A237647(n)*x^n +... %e A237646 Note that C(x)^(1/7) = (1+x+x^2) * C(x^2)^(4/7) is an integer series: %e A237646 C(x)^(1/7) = 1 + x + 5*x^2 + 4*x^3 + 30*x^4 + 26*x^5 + 106*x^6 + 80*x^7 + 459*x^8 + 379*x^9 + 1451*x^10 + 1072*x^11 + 5210*x^12 +...+ A237648(n)*x^n +... %e A237646 Also, C(x) / (1+x+x^2)^3 = A(x)^4: %e A237646 A(x)^4 = 1 + 4*x + 38*x^2 + 128*x^3 + 817*x^4 + 2536*x^5 + 12890*x^6 +... %e A237646 Further, C(x)*C(x^2)^3 = A(x)^7: %e A237646 A(x)^7 = 1 + 7*x + 77*x^2 + 420*x^3 + 2954*x^4 + 13986*x^5 + 78414*x^6 +... %e A237646 The g.f. may be expressed by the product: %e A237646 A(x) = (1+x+x^2) * (1+x^2+x^4)^7 * (1+x^4+x^8)^28 * (1+x^8+x^16)^112 * (1+x^16+x^32)^448 *...* (1 + x^(2*2^n) + x^(4*2^n))^(7*4^n) *... %o A237646 (PARI) {A163659(n)=if(n<1, 0, if(n%3, 1, -2)*sigma(2^valuation(n, 2)))} %o A237646 {a(n)=polcoeff(exp(sum(k=1, n, A163659(k^3)*x^k/k)+x*O(x^n)), n)} %o A237646 for(n=0, 40, print1(a(n), ", ")) %Y A237646 Cf. A237647, A237648, A237649, A195586. %K A237646 nonn %O A237646 0,3 %A A237646 _Paul D. Hanna_, May 03 2014