A237656 Least positive integer m such that {A000720(k^2): k = 1, ..., m} contains a complete system of residues modulo n, or 0 if such a number m does not exist.
1, 5, 3, 6, 8, 10, 18, 17, 30, 41, 28, 43, 29, 33, 43, 27, 66, 47, 98, 105, 155, 114, 113, 100, 49, 62, 118, 146, 85, 125, 80, 117, 74, 101, 167, 137, 168, 282, 176, 287, 129, 178, 151, 140, 163, 139, 262, 267, 277, 234, 285, 188, 203, 163, 192, 239, 188, 241, 252, 252
Offset: 1
Keywords
Examples
a(5) = 8 since {A000720(k^2): k = 1, ..., 8} = {0, 2, 4, 6, 9, 11, 15, 18} contains a complete system of residues modulo 5, but {A000720(k^2): k = 1, ..., 7} contains no integer congruent to 3 modulo 5.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..1011 (n = 1..100 from Zhi-Wei Sun)
- Zhi-Wei Sun, On a^n+bn modulo m, preprint, arXiv:1312.1166 [math.NT], 2013-2014.
Programs
-
Mathematica
q[m_,n_]:=Length[Union[Table[Mod[PrimePi[k^2],n],{k,1,m}]]] Do[Do[If[q[m,n]==n,Print[n," ",m];Goto[aa]],{m,n,2*Prime[n+1]-3}]; Print[n," ",0];Label[aa];Continue,{n,1,60}]
Comments