cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237657 a(n) = |{n < m < 2*n: pi(m) and pi(m^2) are both prime}|, where pi(.) is given by A000720.

Original entry on oeis.org

0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 5, 4, 3, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 6, 6, 6, 5, 4, 4, 4, 4, 5, 5, 5, 5, 5, 4, 4
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 10 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 8.
(ii) For any integer n > 1 there is a prime p <= n such that n + pi(p) is prime. Also, for n > 5 there is a prime p with n < p < 2*n such that pi(p) is prime.
(iii) For each n > 20, there is a prime p with n < p < 2*n such that pi(p^2) is prime.

Examples

			a(4) = 1 since pi(6) = 3 and pi(6^2) = 11 are both prime.
a(10) = 1 since pi(17) = 7 and pi(17^2) = 61 are both prime.
a(17) = 1 since pi(33) = 11 and pi(33^2) = 181 are both prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=PrimeQ[PrimePi[n]]&&PrimeQ[PrimePi[n^2]]
    a[n_]:=Sum[If[q[m],1,0],{m,n+1,2n-1}]
    Table[a[n],{n,1,70}]