A237662 Primes of the form 2^(k+l+m+1) - 2^(l+m+1) + 2^(m+1) + l - 2.
3, 7, 11, 17, 23, 31, 37, 47, 59, 67, 73, 101, 127, 131, 191, 223, 229, 239, 251, 257, 383, 401, 457, 479, 503, 521, 577, 991, 997, 1019, 1031, 1153, 1601, 1993, 2039, 2053, 2069, 3583, 3593, 3851, 3967, 4079, 4091, 4099, 4111, 4133, 6143, 6211
Offset: 1
Keywords
Examples
For k=l=m=1, 2^(k+l+m+1) - 2^(l+m+1) + 2^(m+1) + l - 2 = 2^4 - 2^3 + 2^2 + 1 - 2 = 16 - 8 + 4 + 1 - 2 = 11, so 11 is in the sequence.
Programs
-
PARI
n=10^5;e=89;a=1;if(a%2==0,a=a+1);b=ceil(log(n)/log(2));i=0;d=floor(b^(2.5));v=vector(d);for(n=0,b,for(p=a,b,if(n==0,x=p,x=b);forstep(m=a,x,2,c=2^(n+m+p+1)-2^(m+p+1)+2^(p+1)+m-2;if(isprime(c),i++;v[i]=c))));w=vecsort(v,,8);u=vector(#(w)-1);for(j=1,#(w)-1,u[j]=w[j+1]);if(e>#(u),e=#(u));s=vector(e);for(k=1,e,s[k]=u[k];print1(s[k], ", "))
Comments