This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237667 #24 Aug 11 2023 10:03:31 %S A237667 1,1,2,3,4,6,7,11,12,17,19,29,28,41,42,61,61,87,85,120,117,160,156, %T A237667 224,216,288,277,380,363,483,474,622,610,783,755,994,986,1235,1191, %U A237667 1549,1483,1876,1865,2306,2279,2806,2732,3406,3413,4091,4013,4991,4895,5872 %N A237667 Number of partitions of n such that no part is a sum of two or more other parts. %C A237667 From _Gus Wiseman_, Aug 09 2023: (Start) %C A237667 Includes all knapsack partitions (A108917), but first differs at a(12) = 28, A108917(12) = 25. The difference is accounted for by the non-knapsack partitions: (4332), (5331), (33222). %C A237667 These are partitions not containing the sum of any non-singleton submultiset of the parts, a variation of non-binary sum-free partitions where parts cannot be re-used, ranked by A364531. The complement is counted by A237668. The binary version is A236912. For re-usable parts we have A364350. %C A237667 (End) %H A237667 Giovanni Resta, <a href="/A237667/b237667.txt">Table of n, a(n) for n = 0..100</a> %H A237667 Giovanni Resta, <a href="/A237667/a237667.c.txt">C program for computing a(0)-a(100)</a> %e A237667 For n = 6, the nonqualifiers are 123, 1113, 1122, 11112, leaving a(6) = 7. %e A237667 From _Gus Wiseman_, Aug 09 2023: (Start) %e A237667 The partition y = (5,3,1,1) has submultiset (3,1,1) with sum in y, so is not counted under a(10). %e A237667 The partition y = (5,3,3,1) has no non-singleton submultiset with sum in y, so is counted under a(12). %e A237667 The a(1) = 1 through a(8) = 12 partitions: %e A237667 (1) (2) (3) (4) (5) (6) (7) (8) %e A237667 (11) (21) (22) (32) (33) (43) (44) %e A237667 (111) (31) (41) (42) (52) (53) %e A237667 (1111) (221) (51) (61) (62) %e A237667 (311) (222) (322) (71) %e A237667 (11111) (411) (331) (332) %e A237667 (111111) (421) (521) %e A237667 (511) (611) %e A237667 (2221) (2222) %e A237667 (4111) (3311) %e A237667 (1111111) (5111) %e A237667 (11111111) %e A237667 (End) %t A237667 Map[Count[Map[MemberQ[#,Apply[Alternatives,Map[Apply[Plus,#]&, DeleteDuplicates[DeleteCases[Subsets[#],_?(Length[#]<2&)]]]]]&, IntegerPartitions[#]],False]&,Range[20]] (* _Peter J. C. Moses_, Feb 10 2014 *) %t A237667 Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]=={}&]],{n,0,15}] (* _Gus Wiseman_, Aug 09 2023 *) %Y A237667 For subsets of {1..n} we have A151897, binary A085489. %Y A237667 The binary version is A236912, ranks A364461. %Y A237667 The binary complement is A237113, ranks A364462. %Y A237667 The complement is counted by A237668, ranks A364532. %Y A237667 The binary version with re-usable parts is A364345, strict A364346. %Y A237667 The strict case is A364349, binary A364533. %Y A237667 These partitions have ranks A364531. %Y A237667 The complement for subsets is A364534, binary A088809. %Y A237667 A000041 counts partitions, strict A000009. %Y A237667 A008284 counts partitions by length, strict A008289. %Y A237667 A108917 counts knapsack partitions, ranks A299702. %Y A237667 A323092 counts double-free partitions, ranks A320340. %Y A237667 Cf. A002865, A007865, A179009, A325862, A326083, A363225, A363226, A364348, A364350, A364670. %K A237667 nonn %O A237667 0,3 %A A237667 _Clark Kimberling_, Feb 11 2014 %E A237667 a(21)-a(53) from _Giovanni Resta_, Feb 22 2014