This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237668 #26 Aug 12 2023 09:42:40 %S A237668 0,0,0,0,1,1,4,4,10,13,23,27,49,60,93,115,170,210,300,370,510,632,846, %T A237668 1031,1359,1670,2159,2630,3355,4082,5130,6220,7739,9360,11555,13889, %U A237668 16991,20402,24824,29636,35855,42707,51309,60955,72896,86328,102826,121348 %N A237668 Number of partitions of n such that some part is a sum of two or more other parts. %C A237668 These are partitions containing the sum of some non-singleton submultiset of the parts, a variation of non-binary sum-full partitions where parts cannot be re-used, ranked by A364532. The complement is counted by A237667. The binary version is A237113, or A363225 with re-usable parts. This sequence is weakly increasing. - _Gus Wiseman_, Aug 12 2023 %H A237668 Giovanni Resta, <a href="/A237668/b237668.txt">Table of n, a(n) for n = 0..100</a> %H A237668 Giovanni Resta, <a href="/A237668/a237668.c.txt">C program for computing a(0)-a(100)</a> %e A237668 a(6) = 4 counts these partitions: 123, 1113, 1122, 11112. %e A237668 From _Gus Wiseman_, Aug 12 2023: (Start) %e A237668 The a(0) = 0 through a(9) = 13 partitions: %e A237668 . . . . (211) (2111) (321) (3211) (422) (3321) %e A237668 (2211) (22111) (431) (4221) %e A237668 (3111) (31111) (3221) (4311) %e A237668 (21111) (211111) (4211) (5211) %e A237668 (22211) (32211) %e A237668 (32111) (33111) %e A237668 (41111) (42111) %e A237668 (221111) (222111) %e A237668 (311111) (321111) %e A237668 (2111111) (411111) %e A237668 (2211111) %e A237668 (3111111) %e A237668 (21111111) %e A237668 (End) %t A237668 z = 20; m = Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #] &, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#] < 2 &)]]]]] &, IntegerPartitions[#]], False] &, Range[z]]; PartitionsP[Range[z]] - m %t A237668 (* _Peter J. C. Moses_, Feb 10 2014 *) %t A237668 Table[Length[Select[IntegerPartitions[n],Intersection[#,Total/@Subsets[#,{2,Length[#]}]]!={}&]],{n,0,15}] (* _Gus Wiseman_, Aug 12 2023 *) %Y A237668 Cf. A179009. %Y A237668 The binary complement is A236912, ranks A364461. %Y A237668 The binary version is A237113, ranks A364462. %Y A237668 The complement is counted by A237667, ranks A364531. %Y A237668 The binary version with re-usable parts is A363225, ranks A364348. %Y A237668 The strict case is A364272. %Y A237668 The binary complement with re-usable parts is A364345, ranks A364347. %Y A237668 These partitions have ranks A364532. %Y A237668 For subsets instead of partitions we have A364534, complement A151897. %Y A237668 A000041 counts integer partitions, strict A000009. %Y A237668 A008284 counts partitions by length, strict A008289. %Y A237668 A108917 counts knapsack partitions, ranks A299702. %Y A237668 A299701 counts distinct subset-sums of prime indices. %Y A237668 A323092 counts double-free partitions, ranks A320340. %Y A237668 Cf. A002865, A088809, A237984, A325862, A326083, A363226, A364670. %K A237668 nonn %O A237668 0,7 %A A237668 _Clark Kimberling_, Feb 11 2014 %E A237668 a(21)-a(47) from _Giovanni Resta_, Feb 22 2014