cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237685 Number of partitions of n having depth 1; see Comments.

Original entry on oeis.org

0, 1, 1, 2, 4, 6, 9, 11, 20, 25, 37, 47, 67, 85, 122, 142, 200, 259, 330, 412, 538, 663, 846, 1026, 1309, 1598, 2013, 2432, 3003, 3670, 4467, 5383, 6591, 7892, 9544, 11472, 13768, 16424, 19686, 23392, 27802, 33011, 39094, 46243, 54700, 64273, 75638, 88765
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2014

Keywords

Comments

Suppose that P is a partition of n. Let x(1), x(2),...,x(k) be the distinct parts of P, and let m(i) be the multiplicity of x(i) in P. Let f(P) be the partition [m(1)*x(1), m(2)*x(2),...,x(k)*m(k)] of n. Define c(0,P) = P, c(1,P) = f(P), ..., c(n,P) = f(c(n-1,P)), and define d(P) = least n such that c(n,P) has no repeated parts; d(P) is introduced here as the depth of P. Clearly d(P) = 0 if and only if P is a strict partition, as in A000009. Conjecture: if d >= 0, then 2^d is the least n that has a partition of depth d.

Examples

			The 11 partitions of 6 are partitioned by depth as follows:
  depth 0: 6, 51, 42, 321;
  depth 1: 411, 33, 222, 2211, 21111, 11111;
  depth 2: 3111.
Thus, a(6) = 6, A000009(6) = 4, A237750(6) = 1, A237978(6) = 0.
		

Crossrefs

Programs

  • Mathematica
    z = 60; c[n_] := c[n] = Map[Length[FixedPointList[Sort[Map[Total, Split[#]], Greater] &, #]] - 2 &, IntegerPartitions[n]]
    Table[Count[c[n], 1], {n, 1, z}] (* this sequence *)
    Table[Count[c[n], 2], {n, 1, z}] (* A237750 *)
    Table[Count[c[n], 3], {n, 1, z}] (* A237978 *)
    (* Peter J. C. Moses, Feb 19 2014 *)