This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237686 #25 Feb 28 2018 15:07:44 %S A237686 1,7,14,50,63,105,148,364,413,491,546,798,883,1141,1400,2696,2961, %T A237686 3255,3382,3850,3983,4313,4620,6132,6469,6979,7322,8870,9387,10941, %U A237686 12496,20272,21833,23423,23982,25746,26167,26929,27524,30332,30933 %N A237686 The number of P-positions in the game of Nim with up to four piles, allowing for piles of zero, such that the total number of objects in all piles doesn't exceed 2n. %C A237686 Partial sums of A237711. %H A237686 T. Khovanova and J. Xiong, <a href="http://arxiv.org/abs/1405.5942">Nim Fractals</a>, arXiv:1405.594291 [math.CO] (2014), p. 16 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Khovanova/khova6.html">J. Int. Seq. 17 (2014) # 14.7.8</a>. %F A237686 a(2n+1) = 7a(n) + a(n-1), a(2n+2) = a(n+1) + 7a(n). %e A237686 There is a position (0,0,0,0) with a total of zero. There are 6 positions with a total of 2 that are permutations of (0,0,1,1). Therefore, a(1)=7. %t A237686 Table[Length[ %t A237686 Select[Flatten[ %t A237686 Table[{n, k, j, BitXor[n, k, j]}, {n, 0, a}, {k, 0, a}, {j, 0, %t A237686 a}], 2], Total[#] <= a &]], {a, 0, 100, 2}] %Y A237686 Cf. A237711 (first differences), A130665 (3 piles), A238147 (5 piles), A241522, A241718. %K A237686 nonn %O A237686 0,2 %A A237686 _Tanya Khovanova_ and _Joshua Xiong_, May 02 2014