cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237711 The number of P-positions in the game of Nim with up to four piles, allowing for piles of zero, such that the total number of objects in all piles is 2n.

This page as a plain text file.
%I A237711 #22 Mar 17 2021 07:57:42
%S A237711 1,6,7,36,13,42,43,216,49,78,55,252,85,258,259,1296,265,294,127,468,
%T A237711 133,330,307,1512,337,510,343,1548,517,1554,1555,7776,1561,1590,559,
%U A237711 1764,421,762,595,2808,601,798,463,1980,637,1842,1819,9072,1849
%N A237711 The number of P-positions in the game of Nim with up to four piles, allowing for piles of zero, such that the total number of objects in all piles is 2n.
%C A237711 First differences of A237686.
%H A237711 T. Khovanova and J. Xiong, <a href="http://arxiv.org/abs/1405.5942">Nim Fractals</a>, arXiv:1405.594291 [math.CO] (2014), p. 16 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Khovanova/khova6.html">J. Int. Seq. 17 (2014) # 14.7.8</a>.
%F A237711 a(2n+1) = 6a(n), a(2n+2) = a(n+1) + a(n).
%F A237711 G.f.: Product_{k>=0} (1 + 6*x^(2^k) + x^(2^(k+1))). - _Ilya Gutkovskiy_, Mar 16 2021
%e A237711 The P-positions with the total of 4 are permutations of (0,0,2,2) and (1,1,1,1). Therefore, a(2)=7.
%t A237711 Table[Length[
%t A237711   Select[Flatten[
%t A237711     Table[{n, k, j, BitXor[n, k, j]}, {n, 0, a}, {k, 0, a}, {j, 0,
%t A237711       a}], 2], Total[#] == a &]], {a, 0, 100, 2}]
%Y A237711 Cf. A237686 (partial sums), A048883 (3 piles), A238759 (5 piles), A241522, A241718.
%K A237711 nonn
%O A237711 0,2
%A A237711 _Tanya Khovanova_ and _Joshua Xiong_, May 02 2014