This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237711 #22 Mar 17 2021 07:57:42 %S A237711 1,6,7,36,13,42,43,216,49,78,55,252,85,258,259,1296,265,294,127,468, %T A237711 133,330,307,1512,337,510,343,1548,517,1554,1555,7776,1561,1590,559, %U A237711 1764,421,762,595,2808,601,798,463,1980,637,1842,1819,9072,1849 %N A237711 The number of P-positions in the game of Nim with up to four piles, allowing for piles of zero, such that the total number of objects in all piles is 2n. %C A237711 First differences of A237686. %H A237711 T. Khovanova and J. Xiong, <a href="http://arxiv.org/abs/1405.5942">Nim Fractals</a>, arXiv:1405.594291 [math.CO] (2014), p. 16 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Khovanova/khova6.html">J. Int. Seq. 17 (2014) # 14.7.8</a>. %F A237711 a(2n+1) = 6a(n), a(2n+2) = a(n+1) + a(n). %F A237711 G.f.: Product_{k>=0} (1 + 6*x^(2^k) + x^(2^(k+1))). - _Ilya Gutkovskiy_, Mar 16 2021 %e A237711 The P-positions with the total of 4 are permutations of (0,0,2,2) and (1,1,1,1). Therefore, a(2)=7. %t A237711 Table[Length[ %t A237711 Select[Flatten[ %t A237711 Table[{n, k, j, BitXor[n, k, j]}, {n, 0, a}, {k, 0, a}, {j, 0, %t A237711 a}], 2], Total[#] == a &]], {a, 0, 100, 2}] %Y A237711 Cf. A237686 (partial sums), A048883 (3 piles), A238759 (5 piles), A241522, A241718. %K A237711 nonn %O A237711 0,2 %A A237711 _Tanya Khovanova_ and _Joshua Xiong_, May 02 2014