This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237712 #17 Apr 06 2014 22:20:57 %S A237712 0,1,1,1,0,1,3,1,3,1,2,3,4,3,3,2,2,4,4,1,5,2,2,4,2,6,8,5,6,3,4,5,2,4, %T A237712 3,3,8,5,8,6,4,3,10,6,6,5,1,7,4,4,6,9,6,9,5,4,6,10,3,7,7,6,3,8,13,5,8, %U A237712 3,9,11,4,8,6,8,11,11,11,12,13,12,10,6,7,7,4,16,10,8,9,4,6,14,11,7,4,13,10,13,8,10 %N A237712 a(n) = |{0 < k < n: k*n + pi(k*n) is prime}|, where pi(.) is given by A000720. %C A237712 Conjecture: a(n) > 0 for all n > 5. %C A237712 This implies that there are infinitely many positive integers m with m + pi(m) prime. %H A237712 Zhi-Wei Sun, <a href="/A237712/b237712.txt">Table of n, a(n) for n = 1..2500</a> %H A237712 Z.-W. Sun, <a href="http://arxiv.org/abs/1402.6641">Problems on combinatorial properties of primes</a>, arXiv:1402.6641, 2014 %e A237712 a(6) = 1 since 2*6 + pi(2*6) = 12 + 5 = 17 is prime. %e A237712 a(47) = 1 since 21*47 + pi(21*47) = 987 + 166 = 1153 is prime. %t A237712 p[n_]:=PrimeQ[n+PrimePi[n]] %t A237712 a[n_]:=Sum[If[p[k*n],1,0],{k,1,n-1}] %t A237712 Table[a[n],{n,1,100}] %Y A237712 Cf. A000040, A000720, A237578. %K A237712 nonn %O A237712 1,7 %A A237712 _Zhi-Wei Sun_, Feb 24 2014