A237715 Number of ordered ways to write n = p + q (q > 0) with p, prime(p) - p + 1 and prime(prime(q)) - prime(q) + 1 all prime.
0, 0, 1, 2, 2, 3, 2, 3, 4, 2, 3, 2, 2, 4, 2, 5, 2, 3, 3, 4, 3, 2, 3, 3, 4, 5, 4, 2, 3, 4, 4, 4, 2, 4, 2, 4, 5, 2, 2, 3, 4, 4, 4, 5, 5, 3, 6, 2, 6, 5, 4, 4, 4, 4, 5, 2, 3, 2, 4, 4, 5, 3, 6, 5, 9, 5, 6, 4, 4, 7, 6, 5, 7, 3, 8, 5, 7, 4, 5, 3
Offset: 1
Keywords
Examples
a(3) = 1 since 3 = 2 + 1 with 2, prime(2) - 2 + 1 = 3 - 1 = 2 and prime(prime(1)) - prime(1) + 1 = prime(2) - 2 + 1 = 2 all prime. a(7) = 2 since 7 = 3 + 4 with 3, prime(3) - 3 + 1 = 5 - 2 = 3 and prime(prime(4)) - prime(4) + 1 = prime(7) - 7 + 1 = 17 - 6 = 11 are all prime, and 7 = 5 + 2 with 5, prime(5) - 5 + 1 = 11 - 4 = 7 and prime(prime(2)) - prime(2) + 1 = prime(3) - 3 + 1 = 5 - 2 = 3 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014.
Programs
-
Mathematica
pq[k_]:=PrimeQ[Prime[Prime[k]]-Prime[k]+1] a[n_]:=Sum[If[pq[k]&&pq[n-Prime[k]],1,0],{k,1,PrimePi[n-1]}] Table[a[n],{n,1,80}]
Comments