cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237721 Number of primes p <= n with floor( sqrt(n-p) ) a square.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 4, 4, 4, 4, 5, 5, 5, 5, 4, 3, 5, 4, 5, 4, 4, 4, 4, 3, 4, 3, 4, 4, 4, 3, 4, 3, 3, 3, 4, 3, 3, 3, 2, 2, 4, 3, 3, 2, 2, 2, 4, 4, 5, 4, 4, 4, 3, 2, 3, 2, 3, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 12 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1, and a(n) = 1 only for n = 2, 9, 10, 11, 12, 15, 16, 17.
We have verified this for n up to 10^6.
See also A237705, A237706 and A237720 for similar conjectures.

Examples

			a(2) = 1 since 2 is prime with floor(sqrt(2-2)) = 0^2.
a(3) = 2 since 2 is prime with floor(sqrt(3-2)) = 1^2, and 3 is prime with floor(sqrt(3-3)) = 0^2.
a(9) = a(10) = 1 since 7 is prime with floor(sqrt(9-7)) = floor(sqrt(10-7)) = 1^2.
a(11) = 1 since 11 is prime with floor(sqrt(11-11)) = 0^2.
a(12) = 1 since 11 is prime with floor(sqrt(12-11)) = 1^2.
a(15) = a(16) = 1 since 13 is prime with floor(sqrt(15-13)) = floor(sqrt(16-13)) = 1^2.
a(17) = 1 since 17 is prime with floor(sqrt(17-17)) = 0^2.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    q[n_]:=SQ[Floor[Sqrt[n]]]
    a[n_]:=Sum[If[q[n-Prime[k]],1,0],{k,1,PrimePi[n]}]
    Table[a[n],{n,1,70}]