This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237757 #17 Jan 22 2022 07:31:08 %S A237757 0,1,1,1,1,1,1,2,2,3,4,5,6,8,9,11,13,16,18,22,25,30,35,41,47,56,64,75, %T A237757 86,100,114,133,151,174,198,227,257,295,333,379,428,486,547,620,696, %U A237757 786,882,993,1111,1250,1396,1565,1747,1954,2176,2431,2703,3013 %N A237757 Number of partitions of n such that 2*(least part) = (number of parts). %H A237757 Robert Israel, <a href="/A237757/b237757.txt">Table of n, a(n) for n = 1..10000</a> %F A237757 Conjectural g.f.: Sum_{n >= 0} q^(2*(n+1)^2)/Product_{k = 1..2*n+1} 1 - q^k. - _Peter Bala_, Feb 02 2021 %F A237757 a(n) ~ exp(Pi*sqrt(n/3)) / (2^(7/2) * 3^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jan 22 2022 %e A237757 a(8) = 2 counts these partitions: 71, 2222. %p A237757 f:= proc(n) local t, k, np; %p A237757 t:= 0; %p A237757 for k from 1 do %p A237757 np:= n - 1 - 2*k*(k-1); %p A237757 if np < 2*k-1 then return t fi; %p A237757 t:= t + combinat:-numbpart(np, 2*k-1) - combinat:-numbpart(np,2*k-2) %p A237757 od; %p A237757 end proc: %p A237757 map(f, [$1..100]); # _Robert Israel_, Jul 01 2020 %t A237757 z = 50; Table[Count[IntegerPartitions[n], p_ /; 2 Min[p] == Length[p]], {n, z}] %Y A237757 Cf. A237753. %K A237757 nonn,easy %O A237757 1,8 %A A237757 _Clark Kimberling_, Feb 13 2014