This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237767 #26 Jun 16 2025 15:32:57 %S A237767 1,8,11,18,24,39,42,81,88,93,111,118,124,139,142,181,188,193,214,222, %T A237767 241,248,284,319,333,389,391,398,412,421,428,444,469,482,496,555,649, %U A237767 666,694,777,811,818,824,839,842,881,888,893,913,931 %N A237767 Integers whose product of digits is a nonzero cube. %C A237767 No number with a 0 in it (A011540) can be in this sequence. If a number is in this sequence, then so is its reversal of digits (A004086) and other permutations of its digits. - _Alonso del Arte_, Feb 20 2014 %H A237767 Harvey P. Dale, <a href="/A237767/b237767.txt">Table of n, a(n) for n = 1..1000</a> %F A237767 There are between 9^(k-6) and 9^k k-digit members of this sequence, so a(n) >> n^1.04 and in particular this sequence has density 0. - _Charles R Greathouse IV_, Feb 21 2014 %e A237767 3*9*1 = 27 = 3^3, thus 391 is a member of this sequence. %e A237767 3*9*8 = 216 = 6^3, thus 398 is a member of this sequence. %e A237767 4*2*8 = 64 = 4^3, thus 428 is a member of this sequence. %p A237767 filter:= proc(n) local T; %p A237767 T:= Statistics:-Tally(convert(n,base,10),output=table); %p A237767 if assigned(T[0]) then return false fi; %p A237767 eval(T[2] + 2*T[4] + T[6] mod 3, T = [0$6]) = 0 %p A237767 and eval(T[3] + T[6] + 2*T[9] mod 3, T = [0$9]) = 0 %p A237767 and member(T[5] mod 3, [0,'T[5]']) %p A237767 and member(T[7] mod 3, [0,'T[7]']) %p A237767 end proc: %p A237767 select(filter, [$1..1000]); # _Robert Israel_, Jun 16 2025 %t A237767 pdcQ[n_]:=Module[{idn=IntegerDigits[n]},FreeQ[idn,0]&&IntegerQ[ Surd[ Times@@idn,3]]]; Select[Range[1000],pdcQ] (* _Harvey P. Dale_, Aug 25 2017 *) %o A237767 (Python) %o A237767 def DigitProd(x): %o A237767 total = 1 %o A237767 for i in str(x): %o A237767 total *= int(i) %o A237767 return total %o A237767 def Cube(x): %o A237767 for n in range(1,10**3): %o A237767 if DigitProd(x) == n**3: %o A237767 return True %o A237767 if DigitProd(x) < n**3: %o A237767 return False %o A237767 return False %o A237767 x = 1 %o A237767 while x < 1000: %o A237767 if Cube(x): %o A237767 print(x) %o A237767 x += 1 %o A237767 (Python) %o A237767 from math import prod %o A237767 from sympy import integer_nthroot %o A237767 def ok(n): return (p:=prod(map(int, str(n)))) > 0 and integer_nthroot(p, 3)[1] %o A237767 print([k for k in range(10**3) if ok(k)]) # _Michael S. Branicky_, Jun 16 2025 %o A237767 (PARI) %o A237767 s=[]; for(n=1, 1000, t=eval(Vec(Str(n))); d=prod(i=1, #t, t[i]); if(d>0 && ispower(d, 3), s=concat(s, n))); s \\ _Colin Barker_, Feb 17 2014 %Y A237767 Cf. A007954, A050626. %K A237767 nonn,base %O A237767 1,2 %A A237767 _Derek Orr_, Feb 12 2014 %E A237767 Name edited by _Michel Marcus_, Jun 16 2025