cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237768 Number of primes p < n with pi(n-p) a Sophie Germain prime, where pi(.) is given by A000720.

This page as a plain text file.
%I A237768 #10 Feb 13 2014 03:28:31
%S A237768 0,0,0,0,1,2,2,3,2,2,2,1,2,3,2,3,3,2,2,1,1,3,3,2,2,1,1,2,2,1,1,1,2,5,
%T A237768 5,4,4,4,3,4,4,4,4,3,3,4,4,4,4,3,3,4,4,3,3,2,2,3,3,1,1,3,3,5,5,2,2,1,
%U A237768 1,3,3,4,4,3,3,4,4,4,4,1
%N A237768 Number of primes p < n with pi(n-p) a Sophie Germain prime, where pi(.) is given by A000720.
%C A237768 Conjecture: a(n) > 0 for all n > 4, and a(n) = 1 only for n = 5, 12, 20, 21, 26, 27, 30, 31, 32, 60, 61, 68, 69, 80, 81.
%C A237768 This is stronger than part (i) of the conjecture in A237705.
%C A237768 We have verified that a(n) > 0 for all n = 5, ..., 2*10^7.
%H A237768 Zhi-Wei Sun, <a href="/A237768/b237768.txt">Table of n, a(n) for n = 1..10000</a>
%e A237768 a(5) = 1 since 2, pi(5-2) = pi(3) = 2 and 2*2 + 1 = 5 are all prime.
%e A237768 a(12) = 1 since 7, pi(12-7) = pi(5) = 3 and 2*3 + 1 = 7 are all prime.
%e A237768 a(81) = 1 since 47, pi(81-47) = pi(34) = 11 and 2*11 + 1 = 23 are all prime.
%t A237768 sg[n_]:=PrimeQ[n]&&PrimeQ[2n+1]
%t A237768 a[n_]:=Sum[If[sg[PrimePi[n-Prime[k]]],1,0],{k,1,PrimePi[n-1]}]
%t A237768 Table[a[n],{n,1,80}]
%Y A237768 Cf. A000040, A000720, A005384, A237284, A237705, A237706.
%K A237768 nonn
%O A237768 1,6
%A A237768 _Zhi-Wei Sun_, Feb 13 2014