cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237769 Number of primes p < n with pi(n-p) - 1 and pi(n-p) + 1 both prime, where pi(.) is given by A000720.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 3, 2, 2, 3, 3, 3, 4, 3, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 1, 1, 2, 2, 3, 4, 3, 3, 4, 3, 5, 5, 3, 3, 2, 2, 5, 5, 3, 3, 3, 3, 5, 5, 2, 2, 3, 3, 3, 4, 2, 2, 6, 6, 9, 8, 4, 4, 3, 3, 6, 6, 5, 5, 4, 4, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 13 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 8, and a(n) = 1 only for n = 9, 34, 35.
(ii) For any integer n > 4, there is a prime p < n such that 3*pi(n-p) - 1, 3*pi(n-p) + 1 and 3*pi(n-p) + 5 are all prime. Also, for each integer n > 8, there is a prime p < n such that 3*pi(n-p) - 1, 3*pi(n-p) + 1 and 3*pi(n-p) - 5 are all prime.
(iii) For any integer n > 6, there is a prime p < n such that phi(n-p) - 1 and phi(n-p) + 1 are both prime, where phi(.) is Euler's totient function.

Examples

			a(9) = 1 since 2, pi(9-2) - 1 = 3 and pi(9-2) + 1 = 5 are all prime.
a(34) = 1 since 19, pi(34-19) - 1 = pi(15) - 1 = 5 and pi(34-19) + 1 = pi(15) + 1 = 7 are all prime.
a(35) = 1 since 19, pi(35-19) - 1 = pi(16) - 1 = 5 and pi(35-19) + 1 = pi(16) + 1 = 7 are all prime.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=PrimeQ[n-1]&&PrimeQ[n+1]
    a[n_]:=Sum[If[TQ[PrimePi[n-Prime[k]]],1,0],{k,1,PrimePi[n-1]}]
    Table[a[n],{n,1,80}]