cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A053263 Coefficients of the '5th-order' mock theta function chi_1(q).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 9, 9, 12, 12, 15, 15, 18, 19, 23, 23, 27, 30, 33, 34, 41, 42, 49, 51, 57, 61, 69, 72, 81, 87, 96, 100, 113, 119, 132, 140, 153, 163, 180, 188, 208, 221, 240, 253, 278, 294, 319, 339, 366, 388, 422, 443, 481, 510, 549, 580, 626, 662
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

The rank of a partition is its largest part minus the number of parts.
Number of partitions of n such that 2*(least part) > greatest part. - Clark Kimberling, Feb 16 2014
Also the number of partitions of n with the same median as maximum. These are conjugate to the partitions described above. For minimum instead of maximum we have A361860. - Gus Wiseman, Apr 23 2023

Examples

			From _Gus Wiseman_, Apr 20 2023: (Start)
The a(1) = 1 through a(8) = 6 partitions such that 2*(minimum) > (maximum):
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (322)      (53)
                                     (111111)  (1111111)  (332)
                                                          (2222)
                                                          (11111111)
The a(1) = 1 through a(8) = 6 partitions such that (median) = (maximum):
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (331)      (44)
                    (1111)  (11111)  (222)     (2221)     (332)
                                     (111111)  (1111111)  (2222)
                                                          (22211)
                                                          (11111111)
(End)
		

References

  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 20, 25

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053259, A053260, A053261, A053262, A053264, A053265, A053266, A053267.
A000041 counts integer partitions, strict A000009, odd-length A027193.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    1+Series[Sum[q^(2n+1)(1+q^n)/Product[1-q^k, {k, n+1, 2n+1}], {n, 0, 49}], {q, 0, 100}]
    (* Also: *)
    Table[Count[ IntegerPartitions[n], p_ /; 2 Min[p] > Max[p]], {n, 40}]
    (* Clark Kimberling, Feb 16 2014 *)
    nmax = 100; CoefficientList[Series[1 + Sum[x^(2*k+1)*(1+x^k) / Product[1-x^j, {j, k+1, 2*k+1}], {k, 0, Floor[nmax/2]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

Formula

G.f.: chi_1(q) = Sum_{n>=0} q^n/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n+1))).
G.f.: chi_1(q) = 1 + Sum_{n>=0} q^(2n+1) (1+q^n)/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n+1))).
a(n) is twice the number of partitions of 5n+3 with rank == 2 (mod 5) minus number with rank == 0 or 1 (mod 5).
a(n) - 1 is the number of partitions of n with unique smallest part and all other parts <= one plus twice the smallest part.
a(n) ~ sqrt(phi/2) * exp(Pi*sqrt(2*n/15)) / (5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 16 2019

A118084 Number of partitions of n such that largest part k occurs at most floor(k/2) times.

Original entry on oeis.org

0, 1, 2, 3, 5, 7, 11, 16, 23, 33, 46, 63, 86, 116, 153, 203, 265, 345, 444, 571, 727, 925, 1166, 1468, 1836, 2293, 2845, 3525, 4345, 5347, 6550, 8011, 9758, 11867, 14380, 17399, 20984, 25269, 30341, 36376, 43500, 51943, 61877, 73608, 87373, 103571
Offset: 1

Views

Author

Emeric Deutsch, Apr 12 2006

Keywords

Comments

Also number of partitions of n such that if the number of parts is k, then the smallest part is at most floor(k/2). Example: a(8)=16 because we have [7,1],[6,1,1],[5,2,1],[4,3,1],[5,1,1,1],[4,2,1,1],[3,3,1,1],[3,2,2,1],[2,2,2,2],[4,1,1,1,1],[3,2,1,1,1],[2,2,2,1,1],[3,1,1,1,1,1],[2,2,1,1,1,1],[2,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1].

Examples

			a(8)=16 because we have [8],[7,1],[6,2],[6,1,1],[5,3],[5,2,1],[5,1,1,1],[4,4],[4,3,1],[4,2,2],[4,2,1,1],[4,1,1,1,1],[3,2,2,1],[3,2,1,1,1],[3,1,1,1,1,1] and [2,1,1,1,1,1,1].
		

Crossrefs

Programs

  • Maple
    g:=sum(x^k*(1-x^(k*(floor(k/2))))/product(1-x^j,j=1..k),k=1..85): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50);
  • Mathematica
    z=55 ; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
    Table[Count[q[n], p_ /; 2 Min[p] <= t[p]], {n,z}] (* Clark Kimberling, Feb 15 2014 *)

Formula

G.f.=sum(x^k*(1-x^(k(floor(k/2))))/product(1-x^j, j=1..k), k=1..infinity).

A237758 Number of partitions of n such that 2*(least part) < number of parts.

Original entry on oeis.org

0, 0, 1, 2, 4, 6, 10, 14, 21, 30, 42, 58, 80, 108, 144, 192, 252, 329, 426, 549, 702, 895, 1131, 1427, 1789, 2237, 2781, 3450, 4259, 5247, 6436, 7878, 9607, 11693, 14182, 17172, 20727, 24974, 30008, 35997, 43072, 51457, 61330, 72988, 86677, 102785, 121645
Offset: 1

Views

Author

Clark Kimberling, Feb 15 2014

Keywords

Examples

			a(5) = 4 counts these partitions: 311, 221, 2111, 11111.
		

Crossrefs

Programs

  • Mathematica
    z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
    Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}]   (* A237758 *)
    Table[Count[q[n], p_ /; 2 Min[p] <= t[p]], {n, z}]  (* A118084 *)
    Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}]  (* A237757 *)
    Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}]   (* A237799 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}]  (* A237800 *)

A237799 Number of partitions of n such that 2*(least part) > number of parts.

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 4, 6, 7, 9, 10, 14, 15, 19, 23, 28, 32, 40, 46, 56, 65, 77, 89, 107, 122, 143, 165, 193, 220, 257, 292, 338, 385, 443, 503, 578, 653, 746, 844, 962, 1083, 1231, 1384, 1567, 1761, 1987, 2227, 2510, 2807, 3153, 3523, 3949, 4403, 4927, 5485
Offset: 1

Views

Author

Clark Kimberling, Feb 15 2014

Keywords

Examples

			a(7) = 4 counts these partitions: 7, 52, 43, 322.
		

Crossrefs

Programs

  • Mathematica
    z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
    Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}]   (* A237758 *)
    Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}]  (* A237757 *)
    Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}]   (* A237799 *)
    Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}]  (* A237800 *)

A362049 Number of integer partitions of n such that (length) = 2*(median).

Original entry on oeis.org

0, 1, 0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 4, 5, 9, 12, 19, 22, 29, 32, 39, 43, 51, 57, 70, 81, 101, 123, 153, 185, 230, 272, 328, 386, 454, 526, 617, 708, 824, 951, 1106, 1277, 1493, 1727, 2020, 2344, 2733, 3164, 3684, 4245, 4914, 5647, 6502, 7438, 8533, 9730
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). All of these partitions have even length, because an odd-length multiset cannot have fractional median.

Examples

			The a(13) = 3 through a(15) = 5 partitions:
  (7,2,2,2)  (8,2,2,2)      (9,2,2,2)
  (8,2,2,1)  (9,2,2,1)      (10,2,2,1)
  (8,3,1,1)  (9,3,1,1)      (10,3,1,1)
             (3,3,3,3,1,1)  (3,3,3,3,2,1)
                            (4,3,3,3,1,1)
		

Crossrefs

For maximum instead of median we have A237753.
For minimum instead of median we have A237757.
For maximum instead of length we have A361849, ranks A361856.
This is the equal case of A362048.
These partitions have ranks A362050.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]==2*Median[#]&]],{n,30}]

A362048 Number of integer partitions of n such that (length) <= 2*(median).

Original entry on oeis.org

1, 2, 2, 3, 4, 6, 8, 12, 15, 20, 25, 33, 41, 53, 66, 85, 105, 134, 164, 205, 250, 308, 373, 456, 549, 666, 799, 963, 1152, 1382, 1645, 1965, 2330, 2767, 3269, 3865, 4546, 5353, 6274, 7357, 8596, 10046, 11700, 13632, 15834, 18394, 21312, 24690, 28534, 32974
Offset: 1

Views

Author

Gus Wiseman, Apr 10 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(9) = 15 partitions:
  (1)  (2)   (3)   (4)   (5)    (6)    (7)     (8)     (9)
       (11)  (21)  (22)  (32)   (33)   (43)    (44)    (54)
                   (31)  (41)   (42)   (52)    (53)    (63)
                         (221)  (51)   (61)    (62)    (72)
                                (222)  (322)   (71)    (81)
                                (321)  (331)   (332)   (333)
                                       (421)   (422)   (432)
                                       (2221)  (431)   (441)
                                               (521)   (522)
                                               (2222)  (531)
                                               (3221)  (621)
                                               (3311)  (3222)
                                                       (3321)
                                                       (4221)
                                                       (4311)
		

Crossrefs

For maximum instead of median we have A237755.
For minimum instead of median we have A237800.
For maximum instead of length we have A361848.
The equal case is A362049.
A000041 counts integer partitions, strict A000009.
A000975 counts subsets with integer median.
A325347 counts partitions with integer median, complement A307683.
A359893 and A359901 count partitions by median.
A360005 gives twice median of prime indices, distinct A360457.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Length[#]<=2*Median[#]&]],{n,30}]
Showing 1-6 of 6 results.