A053263
Coefficients of the '5th-order' mock theta function chi_1(q).
Original entry on oeis.org
1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 9, 9, 12, 12, 15, 15, 18, 19, 23, 23, 27, 30, 33, 34, 41, 42, 49, 51, 57, 61, 69, 72, 81, 87, 96, 100, 113, 119, 132, 140, 153, 163, 180, 188, 208, 221, 240, 253, 278, 294, 319, 339, 366, 388, 422, 443, 481, 510, 549, 580, 626, 662
Offset: 0
From _Gus Wiseman_, Apr 20 2023: (Start)
The a(1) = 1 through a(8) = 6 partitions such that 2*(minimum) > (maximum):
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (32) (33) (43) (44)
(1111) (11111) (222) (322) (53)
(111111) (1111111) (332)
(2222)
(11111111)
The a(1) = 1 through a(8) = 6 partitions such that (median) = (maximum):
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (221) (33) (331) (44)
(1111) (11111) (222) (2221) (332)
(111111) (1111111) (2222)
(22211)
(11111111)
(End)
- Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 20, 25
- Vaclav Kotesovec, Table of n, a(n) for n = 0..5000 (terms 0..1000 from Seiichi Manyama)
- George E. Andrews, The fifth and seventh order mock theta functions, Trans. Amer. Math. Soc., 293 (1986) 113-134.
- George E. Andrews and Frank G. Garvan, Ramanujan's "lost" notebook VI: The mock theta conjectures, Advances in Mathematics, 73 (1989) 242-255.
- George N. Watson, The mock theta functions (2), Proc. London Math. Soc., series 2, 42 (1937) 274-304.
Other '5th-order' mock theta functions are at
A053256,
A053257,
A053258,
A053259,
A053260,
A053261,
A053262,
A053264,
A053265,
A053266,
A053267.
-
1+Series[Sum[q^(2n+1)(1+q^n)/Product[1-q^k, {k, n+1, 2n+1}], {n, 0, 49}], {q, 0, 100}]
(* Also: *)
Table[Count[ IntegerPartitions[n], p_ /; 2 Min[p] > Max[p]], {n, 40}]
(* Clark Kimberling, Feb 16 2014 *)
nmax = 100; CoefficientList[Series[1 + Sum[x^(2*k+1)*(1+x^k) / Product[1-x^j, {j, k+1, 2*k+1}], {k, 0, Floor[nmax/2]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)
A118084
Number of partitions of n such that largest part k occurs at most floor(k/2) times.
Original entry on oeis.org
0, 1, 2, 3, 5, 7, 11, 16, 23, 33, 46, 63, 86, 116, 153, 203, 265, 345, 444, 571, 727, 925, 1166, 1468, 1836, 2293, 2845, 3525, 4345, 5347, 6550, 8011, 9758, 11867, 14380, 17399, 20984, 25269, 30341, 36376, 43500, 51943, 61877, 73608, 87373, 103571
Offset: 1
a(8)=16 because we have [8],[7,1],[6,2],[6,1,1],[5,3],[5,2,1],[5,1,1,1],[4,4],[4,3,1],[4,2,2],[4,2,1,1],[4,1,1,1,1],[3,2,2,1],[3,2,1,1,1],[3,1,1,1,1,1] and [2,1,1,1,1,1,1].
-
g:=sum(x^k*(1-x^(k*(floor(k/2))))/product(1-x^j,j=1..k),k=1..85): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..50);
-
z=55 ; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
Table[Count[q[n], p_ /; 2 Min[p] <= t[p]], {n,z}] (* Clark Kimberling, Feb 15 2014 *)
A237758
Number of partitions of n such that 2*(least part) < number of parts.
Original entry on oeis.org
0, 0, 1, 2, 4, 6, 10, 14, 21, 30, 42, 58, 80, 108, 144, 192, 252, 329, 426, 549, 702, 895, 1131, 1427, 1789, 2237, 2781, 3450, 4259, 5247, 6436, 7878, 9607, 11693, 14182, 17172, 20727, 24974, 30008, 35997, 43072, 51457, 61330, 72988, 86677, 102785, 121645
Offset: 1
a(5) = 4 counts these partitions: 311, 221, 2111, 11111.
-
z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}] (* A237758 *)
Table[Count[q[n], p_ /; 2 Min[p] <= t[p]], {n, z}] (* A118084 *)
Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}] (* A237757 *)
Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}] (* A237799 *)
Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}] (* A237800 *)
A237799
Number of partitions of n such that 2*(least part) > number of parts.
Original entry on oeis.org
1, 1, 1, 2, 2, 4, 4, 6, 7, 9, 10, 14, 15, 19, 23, 28, 32, 40, 46, 56, 65, 77, 89, 107, 122, 143, 165, 193, 220, 257, 292, 338, 385, 443, 503, 578, 653, 746, 844, 962, 1083, 1231, 1384, 1567, 1761, 1987, 2227, 2510, 2807, 3153, 3523, 3949, 4403, 4927, 5485
Offset: 1
a(7) = 4 counts these partitions: 7, 52, 43, 322.
-
z = 55; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := Length[p];
Table[Count[q[n], p_ /; 2 Min[p] < t[p]], {n, z}] (* A237758 *)
Table[Count[q[n], p_ /; 2 Min[p] == t[p]], {n, z}] (* A237757 *)
Table[Count[q[n], p_ /; 2 Min[p] > t[p]], {n, z}] (* A237799 *)
Table[Count[q[n], p_ /; 2 Min[p] >= t[p]], {n, z}] (* A237800 *)
A362049
Number of integer partitions of n such that (length) = 2*(median).
Original entry on oeis.org
0, 1, 0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 3, 4, 5, 9, 12, 19, 22, 29, 32, 39, 43, 51, 57, 70, 81, 101, 123, 153, 185, 230, 272, 328, 386, 454, 526, 617, 708, 824, 951, 1106, 1277, 1493, 1727, 2020, 2344, 2733, 3164, 3684, 4245, 4914, 5647, 6502, 7438, 8533, 9730
Offset: 1
The a(13) = 3 through a(15) = 5 partitions:
(7,2,2,2) (8,2,2,2) (9,2,2,2)
(8,2,2,1) (9,2,2,1) (10,2,2,1)
(8,3,1,1) (9,3,1,1) (10,3,1,1)
(3,3,3,3,1,1) (3,3,3,3,2,1)
(4,3,3,3,1,1)
For maximum instead of median we have
A237753.
For minimum instead of median we have
A237757.
These partitions have ranks
A362050.
A000975 counts subsets with integer median.
A362048
Number of integer partitions of n such that (length) <= 2*(median).
Original entry on oeis.org
1, 2, 2, 3, 4, 6, 8, 12, 15, 20, 25, 33, 41, 53, 66, 85, 105, 134, 164, 205, 250, 308, 373, 456, 549, 666, 799, 963, 1152, 1382, 1645, 1965, 2330, 2767, 3269, 3865, 4546, 5353, 6274, 7357, 8596, 10046, 11700, 13632, 15834, 18394, 21312, 24690, 28534, 32974
Offset: 1
The a(1) = 1 through a(9) = 15 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(11) (21) (22) (32) (33) (43) (44) (54)
(31) (41) (42) (52) (53) (63)
(221) (51) (61) (62) (72)
(222) (322) (71) (81)
(321) (331) (332) (333)
(421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(3321)
(4221)
(4311)
For maximum instead of median we have
A237755.
For minimum instead of median we have
A237800.
For maximum instead of length we have
A361848.
A000975 counts subsets with integer median.
Showing 1-6 of 6 results.
Comments