This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237821 #14 May 27 2023 10:33:02 %S A237821 0,0,1,2,4,7,11,16,25,35,48,68,92,123,164,216,282,367,471,604,769,975, %T A237821 1225,1542,1924,2395,2968,3669,4514,5547,6781,8280,10071,12229,14796, %U A237821 17881,21537,25902,31066,37206,44443,53021,63098,74995,88946,105350,124533 %N A237821 Number of partitions of n such that 2*(least part) <= greatest part. %C A237821 By conjugation, also the number of integer partitions of n with different median from maximum, ranks A362980. - _Gus Wiseman_, May 15 2023 %F A237821 G.f.: Sum_{i>=1} Sum_{j>=0} x^(3*i+j) /Product_{k=i..2*i+j} (1-x^k). - _Seiichi Manyama_, May 27 2023 %e A237821 a(6) = 7 counts these partitions: 51, 42, 411, 321, 3111, 2211, 21111. %e A237821 From _Gus Wiseman_, May 15 2023: (Start) %e A237821 The a(3) = 1 through a(8) = 16 partitions wirth 2*(least part) <= greatest part: %e A237821 (21) (31) (41) (42) (52) %e A237821 (211) (221) (51) (61) %e A237821 (311) (321) (331) %e A237821 (2111) (411) (421) %e A237821 (2211) (511) %e A237821 (3111) (2221) %e A237821 (21111) (3211) %e A237821 (4111) %e A237821 (22111) %e A237821 (31111) %e A237821 (211111) %e A237821 The a(3) = 1 through a(8) = 16 partitions with different median from maximum: %e A237821 (21) (31) (32) (42) (43) %e A237821 (211) (41) (51) (52) %e A237821 (311) (321) (61) %e A237821 (2111) (411) (322) %e A237821 (2211) (421) %e A237821 (3111) (511) %e A237821 (21111) (3211) %e A237821 (4111) %e A237821 (22111) %e A237821 (31111) %e A237821 (211111) %e A237821 (End) %t A237821 z = 60; q[n_] := q[n] = IntegerPartitions[n]; %t A237821 Table[Count[q[n], p_ /; 2 Min[p] < Max[p]], {n, z}] (* A237820 *) %t A237821 Table[Count[q[n], p_ /; 2 Min[p] <= Max[p]], {n, z}] (* A237821 *) %t A237821 Table[Count[q[n], p_ /; 2 Min[p] = = Max[p]], {n, z}](* A118096 *) %t A237821 Table[Count[q[n], p_ /; 2 Min[p] > Max[p]], {n, z}] (* A053263 *) %t A237821 Table[Count[q[n], p_ /; 2 Min[p] >= Max[p]], {n, z}] (* A237824 *) %Y A237821 The complement is counted by A053263, ranks A081306. %Y A237821 These partitions have ranks A069900. %Y A237821 The case of equality is A118096. %Y A237821 For < instead of <= we have A237820, ranks A362982. %Y A237821 For >= instead of <= we have A237824, ranks A362981. %Y A237821 The conjugate partitions have ranks A362980. %Y A237821 A000041 counts integer partitions, strict A000009. %Y A237821 A325347 counts partitions with integer median, complement A307683. %Y A237821 Cf. A002865, A008284, A171979, A237984, A238478, A238479, A327472, A359893, A362612, A362622. %K A237821 nonn,easy %O A237821 1,4 %A A237821 _Clark Kimberling_, Feb 16 2014