This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237833 #30 Dec 18 2023 10:09:03 %S A237833 0,0,0,0,1,1,3,4,7,10,16,20,31,41,56,74,101,129,172,219,284,362,463, %T A237833 579,735,918,1147,1422,1767,2172,2680,3279,4013,4888,5947,7200,8721, %U A237833 10515,12663,15202,18235,21798,26039,31015,36898,43802,51930,61426,72590 %N A237833 Number of partitions of n such that (greatest part) - (least part) > number of parts. %H A237833 Seiichi Manyama, <a href="/A237833/b237833.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..96 from R. J. Mathar) %H A237833 George E. Andrews, <a href="https://georgeandrews1.github.io/pdf/315.pdf">4-Shadows in q-Series and the Kimberling Index</a>, Preprint, May 15, 2016. %F A237833 A237831(n) + a(n) = A000041(n). - _R. J. Mathar_, Nov 24 2017 %F A237833 G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^k * (k-1) * ( x^(k*(3*k-1)/2) + x^(k*(3*k+1)/2) ). (See Andrews' preprint.) - _Seiichi Manyama_, May 20 2023 %e A237833 a(8) = 4 counts these partitions: 7+1, 6+2, 6+1+1, 5+2+1. %p A237833 isA237833 := proc(p) %p A237833 if abs(p[1]-p[-1]) > nops(p) then %p A237833 return 1; %p A237833 else %p A237833 return 0; %p A237833 end if; %p A237833 end proc: %p A237833 A237833 := proc(n) %p A237833 local a,p; %p A237833 a := 0 ; %p A237833 p := combinat[firstpart](n) ; %p A237833 while true do %p A237833 a := a+isA237833(p) ; %p A237833 if nops(p) = 1 then %p A237833 break; %p A237833 end if; %p A237833 p := nextpart(p) ; %p A237833 end do: %p A237833 return a; %p A237833 end proc: %p A237833 seq(A237833(n),n=1..20) ; # _R. J. Mathar_, Nov 17 2017 %t A237833 z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p]; %t A237833 Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A237830 *) %t A237833 Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *) %t A237833 Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *) %t A237833 Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A237833 *) %t A237833 Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *) %o A237833 (PARI) my(N=50, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^k*(k-1)*(x^(k*(3*k-1)/2)+x^(k*(3*k+1)/2))))) \\ _Seiichi Manyama_, May 20 2023 %Y A237833 Cf. A237830, A237831, A237832, A237834. %Y A237833 Different from, but has the same beginning as, A275633. %K A237833 nonn,easy %O A237833 1,7 %A A237833 _Clark Kimberling_, Feb 16 2014