A237834 Number of partitions of n such that (greatest part) - (least part) >= number of parts.
0, 0, 0, 1, 1, 3, 4, 7, 10, 15, 20, 30, 39, 54, 71, 96, 123, 163, 208, 270, 342, 437, 548, 695, 865, 1083, 1341, 1666, 2048, 2527, 3089, 3784, 4604, 5606, 6786, 8222, 9907, 11940, 14331, 17196, 20554, 24563, 29252, 34820, 41327, 49016, 57982, 68545, 80833
Offset: 1
Examples
a(7) = 4 counts these partitions: 6+1, 5+2, 5+1+1, 4+2+1.
Links
- R. J. Mathar, Table of n, a(n) for n = 1..95
- George E. Andrews, 4-Shadows in q-Series and the Kimberling Index, Preprint, May 15, 2016.
Programs
-
Mathematica
z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p]; Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}] (* A237830 *) Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *) Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *) Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}] (* A237833 *) Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *) Table[Count[IntegerPartitions[n],?(#[[1]]-#[[-1]]>=Length[#]&)],{n,50}] (* _Harvey P. Dale, Jul 21 2023 *)