cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237834 Number of partitions of n such that (greatest part) - (least part) >= number of parts.

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 4, 7, 10, 15, 20, 30, 39, 54, 71, 96, 123, 163, 208, 270, 342, 437, 548, 695, 865, 1083, 1341, 1666, 2048, 2527, 3089, 3784, 4604, 5606, 6786, 8222, 9907, 11940, 14331, 17196, 20554, 24563, 29252, 34820, 41327, 49016, 57982, 68545, 80833
Offset: 1

Views

Author

Clark Kimberling, Feb 16 2014

Keywords

Examples

			a(7) = 4 counts these partitions:  6+1, 5+2, 5+1+1, 4+2+1.
		

Crossrefs

Programs

  • Mathematica
    z = 60; q[n_] := q[n] = IntegerPartitions[n]; t[p_] := t[p] = Length[p];
    Table[Count[q[n], p_ /; Max[p] - Min[p] < t[p]], {n, z}]  (* A237830 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] <= t[p]], {n, z}] (* A237831 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] == t[p]], {n, z}] (* A237832 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] > t[p]], {n, z}]  (* A237833 *)
    Table[Count[q[n], p_ /; Max[p] - Min[p] >= t[p]], {n, z}] (* A237834 *)
    Table[Count[IntegerPartitions[n],?(#[[1]]-#[[-1]]>=Length[#]&)],{n,50}] (* _Harvey P. Dale, Jul 21 2023 *)

Formula

A237830(n)+a(n) = A000041(n). - R. J. Mathar, Nov 24 2017