This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A237881 #21 Nov 02 2023 16:01:53 %S A237881 0,3,2,1,3,1,2,1,2,2,2,1,2,1,2,4,3,7,1,4,3,1,2,1,1,2,1,3,1,4,1,2,2,5, %T A237881 2,2,6,1,2,5,3,2,7,1,2,1,1,1,3,1,3,5,2,2,3,2,2,2,1,2,6,3,1,4,1,3,2,2, %U A237881 3,1,3,1,2,4,1,2,1,1,1,2,3,2,5,3,1,2,1,1,2,1,1,1,1,1,1,2,1,2,3,6,4,5,2,2,2,2,2,3,4,3,2,1,2,1,3,2,1,2,5,3,1,1,4 %N A237881 a(n) = 2-adic valuation of prime(n)+prime(n+1). %H A237881 Charles R Greathouse IV, <a href="/A237881/b237881.txt">Table of n, a(n) for n = 1..10000</a> %F A237881 a(n) = A007814(A001043(n)). %F A237881 a(n) << log n; in particular, a(n) <= log_2 n + log_2 log n + O(1). - _Charles R Greathouse IV_, Feb 14 2014 %e A237881 a(5)=3 because prime(5)=11, prime(6)=13, 11+13=24=2^3*3, 2-adic valuation(24)=3. %t A237881 IntegerExponent[ListConvolve[{1,1},Prime[Range[200]]],2] (* _Paolo Xausa_, Nov 02 2023 *) %o A237881 (PARI) {for(i=1,200,k=valuation(prime(i)+prime(i+1),2);print1(k,", "))} %o A237881 (Python) %o A237881 from sympy import prime %o A237881 def A237881(n): return (~(m:=prime(n)+prime(n+1))&m-1).bit_length() # _Chai Wah Wu_, Jul 08 2022 %Y A237881 Cf. A071087, A098048. %K A237881 nonn,easy %O A237881 1,2 %A A237881 _Antonio Roldán_, Feb 14 2014